PROJECT:

Oregon Convention Center

Chiller Plant Redesign
777 NE Martin Luther King Jr Blvd Portland, OR 97232

MFIA, Inc Consulting Engineers
2007 SE Ash St
Portland, OR 97214

James G. Pierson, Inc.
Consulting Structural Engineers
610 S.W. ALDER SUITE 918 PORTLAND, OR. 97205
(503) 226-1286 FAX 226-3130

Structural Narrative

The four large cooling towers on the lower roof at the east side of the Oregon Convention Center are being replaced with a newer Chiller units that are both smaller and lighter in weight than the existing cooling towers and it will be located in the same area. The existing framing and cooling towers were part of the 1990 construction.

Summary:

The lateral support requirements of the HVAC units can be resisted by the existing beams and posts with a new frame added to these existing posts (frame sized for the smaller unit dimensions). The new cooling tower CT-1 weights $9,500 \mathrm{lbs}$ compared to $14,000 \mathrm{lbs}$ for the old one and the new CT-2, 3, 4 weighs $24,700 \mathrm{lbs}$ compared to $26,000 \mathrm{lbs}$ for the existing units.

The vertical load of the new Cooling Tower is resisted by the existing concrete curb walls on the roof. The curbs act as concrete beams spanning between steel beams that create the roof of the mechanical area. The existing steel beams at the top of the curb will remain with new steel curb located on top of it sized for the footprint of the new, smaller units. Lateral loads are transmitted the exact same as before, just lighter units.

Consulting Structural Engineers

Project	OCC Chillers
Tob no.	
Location	Portland, OR
Date	
Client	$4 / 13 / 18$

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W.Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	${ }^{\text {Project }}$ OCC Chillers	Job no.
	Location Portland, OR	$\begin{array}{\|r\|} \hline \text { Date } \\ 4 / 13 / 18 \end{array}$
	${ }^{\text {client }} \text { MFIA }$	$\begin{aligned} & \text { Sheet no. } \\ & \text { Page } 4 \text { of } 21 \end{aligned}$

Seismic Design Forces on Mechanical Units

Task: Determine the lateral forces (seismic) and required connections for HVAC equipment installed onto a floor or roof of a structure. The vertical adequacy of the structure for the weight of the equipment and other dead and live loads is beyond the scope of this section of the analysis and is by others unless specifically noted herein.

References: 2012 IBC (2014 OSSC) Section 1613.1
ASCE 7-10 Section 13.6 for mechanical components and systems

Criteria:

Seismic Design Category D, Component Importance Factor
$\mathrm{I}_{\mathrm{p}}=1.00$
Latitude $=45.528$
Longitude $=-\mathbf{1 2 2 . 6 6 2}$
Site class D
Risk Category III
$\mathrm{W}_{\mathrm{p}}=\mathbf{9 5 0 0} \mathrm{lb}$
h = 204 in
w $=84$ in
$\mathrm{l}=168$ in
$\mathbf{W}_{\text {curb }}=1000 \mathrm{lb}$
$h_{\text {curb }}=48$ in
Mapped acceleration parameters (Section 11.4.1)
at short period $\quad \mathrm{S}_{\mathrm{s}}=0.976$
at 1 sec period $\quad \mathrm{S}_{1}=0.418$

Site coefficient at short period (Table 11.4-1)
$\mathrm{F}_{\mathrm{a}}=1.110$
at 1 sec period (Table 11.4-2)
$\mathrm{F}_{\mathrm{v}}=1.582$

Spectral response acceleration parameters

at short period (Eq. 11.4-1)
$S_{\text {ms }}=F_{a} \times S_{s}=1.083$
at 1 sec period (Eq. 11.4-2)
$S_{M 1}=F_{V} \times S_{1}=0.661$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

Design spectral acceleration parameters (Sect 11.4.4)
Source: http://geohazards.usgs.gov/designmaps/us/application.php
at short period (Eq. 11.4-3) $\quad \mathrm{S}_{\mathrm{DS}}=2 / 3 \times \mathrm{S}_{\mathrm{ms}}=\mathbf{0 . 7 2 2}$
at 1 sec period (Eq. 11.4-4) $\quad \mathrm{S}_{\mathrm{D} 1}=2 / 3 \times \mathrm{S}_{\mathrm{M} 1}=0.441$

Project	OCC CHILLERS - CT-1	Job no.
Location	777 NE MLK JR BLVD, Portland, OR	Date
Client	MFIA Inc, Consulting Engineers	Sheet no.

Application of OSSC and ASCE 7-10 Requirements:

Section 13.3 Attachments for floor or roof mounted equipment greater than 400 lbs in weight need to be designed for seismic forces

Section 13.3-1 - Design for Total Lateral Force
Total design lateral force $\quad F_{p}=\frac{a_{p} C_{a} I_{p}}{R_{p}}\left(1+3 \frac{h_{x}}{h_{r}}\right) W_{p}$
Eq. 13.3-1
Except that: $\quad F_{p}>0.7 C_{a} I_{p} W_{p}$ and $F_{p} \leq 4 C_{a} I_{p} W_{p}$

Table 13.6-1 - Horizontal Force Factors, a_{p} and R_{p}
Electrical, mechanical and plumbing equipment and associated conduit and ductwork and piping. - $\mathbf{a}_{\mathrm{p}}=1.0$ and $\mathbf{R}_{\mathrm{p}}=2.5$

Unit on flat roof above mechanical room so $h_{\mathbf{x}}=\mathbf{1 6} \mathbf{f t} \mathbf{h}_{\mathbf{r}}=\mathbf{1 6} \mathbf{f t}$

Load Combinations - Members and the connection design shall use the load combinations and factors specified in Section 2.3.2. The reliability/redundancy factor may be taken as 1.0 and Fp is substituted for Qe .

Design Lateral Force:

$\mathbf{F}_{\mathbf{p}}=\mathbf{0 . 4} * \mathbf{a}_{\mathbf{p}} * \mathrm{~S}_{\mathrm{DS}} * \mathrm{I}_{\mathrm{p}} / \mathrm{R}_{\mathrm{p}} *\left(1+2 * \mathrm{~h}_{\mathrm{x}} / \mathrm{h}_{\mathrm{r}}\right) * \mathrm{~W}_{\mathrm{p}} \quad \quad \mathbf{F}_{\mathrm{p}}=3292.228 \mathrm{lbs}$ Eq. 13.3-1
Fp need not exceed $\mathrm{Fp}_{1}=1.6 * \mathrm{SDS}_{\mathrm{DS}} * \mathrm{I}_{\mathrm{p}} * \mathrm{~W}_{\mathrm{p}}=10974.092 \mathrm{lbs}$ Eq. 13.3-2
Fp shall not be less than $\mathrm{Fp}_{2}=0.3 * \mathrm{~S}_{\mathrm{DS}} * \mathrm{I}_{\mathrm{p}} * \mathrm{~W}_{\mathrm{p}}=2057.642 \mathrm{lbs} \quad$ Eq. 13.3-3

The design is controlled by $\mathbf{F}_{\mathbf{p}}=3292.228 \mathrm{lbs}$

$$
\mathbf{F}_{\mathbf{p c u r b}}=\mathbf{0 . 4} * \mathbf{a}_{\mathbf{p}} * \mathrm{~S}_{\mathrm{DS}} * \mathrm{I}_{\mathrm{p}} / \mathrm{R}_{\mathrm{p}} *\left(1+2 * \mathrm{~h}_{\mathrm{x}} / \mathrm{h}_{\mathrm{r}}\right) * \mathrm{~W}_{\text {curb }} \quad \mathbf{F}_{\text {pcurb }}=346.550 \text { lbs Eq. 13.3-1 }
$$

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	propet	OCC CHILLERS - CT-1	Job no.
		777 NE MLK JR BLVD, Portland, OR	${ }^{\text {Date }}$ 5/212018
	${ }^{\text {cilient }}$	MFIA Inc, Consulting Engineers	

Overturning:

Overturning will be controlled by Equation 2.3.2-7 of the Basic Load Combinations for Strength Design which is:

$$
0.9 \mathbf{D}+\mathbf{E}
$$

In this equation, according to ASCE 7 the value of E shall include

$$
\mathrm{E}=\mathrm{pQe}-0.2 \mathrm{Sds} \mathrm{D}=1.0 \mathrm{Qe}-\left[0.2 \times \mathrm{S}_{\mathrm{DS}} \times \mathrm{W}_{\mathrm{p}}\right]=\mathbf{Q e}-0.144 \mathbf{D}
$$

Therefore, when substituting Qe Equation 16-18 becomes $\quad 0.756$ D + E

Assume Center of gravity of unit and curb is located at center of height. The following forces apply to allowable stress stability calculations using Equation 16-18 as modified for Qe

$$
\begin{aligned}
& \text { Unit Mass }=-0.756 \underline{\mathbf{D}}=7178.239 \mathrm{lbs} \\
& \mathbf{F}_{\mathbf{p}}=3292.228 \mathrm{lbs}
\end{aligned}
$$

| James G. Pierson, Inc. | Project \quad OCC CHILLERS - CT-1 | Job no. |
| :--- | :--- | :--- | :--- |
| Consulting Structural Engineers
 610 S.W. Alder, Suite 918 Portland, Oregon 97205
 Tel: (503) 226-1286 Fax: (503) 226-3130 | Client $\quad 777$ NE MLK JR BLVD, Portland, OR | Date |
| | MFIA Inc, Consulting Engineers | Sheet no. |

```
Compute Stability about bottom of curb
h = 204.000 in
h/2=102.000 in
hcurb}=48.000 i
w}=84.000 i
w/2 = 42.000 in
```

Overturning_Moment $=\mathrm{Fp}_{\mathrm{p}} \times \mathrm{h} / 2+\mathrm{h}$ curb) $=493834.138 \mathrm{lbs}$ in Curb Overturning_Momentc $=\mathrm{F}_{\text {pcurb }} \times \mathrm{h}_{\text {curb }}=16634.413 \mathrm{lbs}$ in

Total Overturning Moment $=\mathbf{=} 510468.551 \mathrm{lbs}$ in
Restoring_Moment $=\quad($ UnitMass + UnitMassc $) \times w / 2=333221.388$
lbs_in

Safety Factor Against Overturning =Restoring_Moment / TM $=\mathbf{0 . 6 5 3}$

From this calculation, it is demonstrated that there is some overturning and will need the benefit of hold down anchors. Need to anchor unit for sliding forces also.

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	${ }^{\text {Project }}$	OCC CHILLERS - CT-1	Job no.
	${ }^{\text {Loation }}$	777 NE MLK JR BLVD, Portland, OR	${ }^{\text {Date }} \quad 5 / 2 / 2018$
	Client	MFIA Inc, Consulting Engineers	Sheet no.

JOB NAME Oregon Convention Center
CUSTOMER MFIA Engineering
CUSTOMER P.O.
MASON M.I.
DWG. NO.

SLRSO 2" DEFLECTION
B, B2, C2, 2-C2 \& 4-C2 SERIES SPRING MOUNTS

50\% Travel to Solid					
SLRSO	Capacity	Defl.	SLRSO	Capacity (lbs)	Defl.
B2-450	411	1.83	2-C2-2420	02020	1.67
B2-680	565	1.66	2-C2-3080	02570	1.67
C2-880	800	1.82	2-C2-3740	03120	1.67
C2-1210	1010	1.67	4-C2-4840	04040	1.67
C2-1540	1285	1.67	4-C2-6160	05145	1.67
C2-1870	1560	1.67	4-C2-7480	06245	1.67
2-C2-1760	01600	1.82			

SPRING DATA

Size	Spring (in)	Free Ht. (in)	Ratio Kx/Ky	Ratio OD/OH
B	$23 / 8$	4	$0.55-0.65$	$0.95-1.00$
B2	$23 / 8$	$41 / 2$	$0.80-0.90$	$1.19-1.48$
C2	$27 / 8$	5	$0.63-0.85$	$0.96-1.15$

\#Published ratings allow minimum 25% additional travel to solid. For 50% minimum specified use the ratings shown above. All springs without "\#" have additional travel to solid equal to 50% of the rated deflection.

TYPE SLRSO RATINGS

Size	Rated Capacity (b)	Rated Defl. (in)	Spring Constant (lb/in)	Max. Horiz. Housing G Rating	Spring Color
SLRSO-B-20	20	2.40	8	70.0	Tan
SLRSO-B-26	26	2.18	12	53.9	Wht/Blue
SLRSO-B-35	35	2.20	16	40.0	Purple
SLRSO-B-50	50	2.20	24	28.0	Wht/Red
SLRSO-B-65	65	2.10	31	21.6	Brown
SLRSO-B-85	85	2.10	40	16.5	Wht/Blk
SLRSO-B-115	115	2.00	57	12.2	Silver
SLRSO-B-150	150	2.00	75	9.3	Orange
SLRSO-B2-210	210	2.12	99	6.8	Silver
SLRSO-B2-290	290	2.00	144	4.9	Blue
SLRSO-B2-450\#	450	2.00	224	3.2	Tan
SLRSO-B2-680\#	680	2.00	340	2.1	Gray
SLRSO-C2-125	125	2.50	50	35.2	Purple
SLRSO-C2-170	170	2.40	70	25.9	Brown
SLRSO-C2-210	210	2.30	90	21.0	Red
SLRSO-C2-260	260	2.20	120	16.9	White
SLRSO-C2-330	330	2.00	165	13.3	Black
SLRSO-C2-460	460	2.00	230	9.6	Blue
SLRSO-C2-610	610	2.00	305	7.2	Green
SLRSO-C2-880\#	880	2.00	440	5.0	Gray
SLRSO-C2-1210\#	1210	2.00	605	3.6	Silver
SLRSO-C2-1540\#	1540	2.00	770	2.9	Gray*
SLRSO-C2-1870\#	1870	2.00	935	2.4	Silver*
SLRSO-2-C2-340	340	2.40	140	17.7	Brown
SLRSO-2-C2-420	420	2.30	180	14.3	Red
SLRSO-2-C2-520	520	2.20	240	11.6	White
SLRSO-2-C2-660	660	2.00	330	9.1	Black
SLRSO-2-C2-920	920	2.00	460	6.5	Blue
SLRSO-2-C2-1220	1220	2.00	610	4.9	Green
SLRSO-2-C2-1760\#	\# 1760	2.00	880	3.4	Gray
SLRSO-2-C2-2420\#	\# 2420	2.00	1210	2.5	Silver
SLRSO-2-C2-3080\#	\# 3080	2.00	1540	1.9	Gray*
SLRSO-2-C2-3740\#	\# 3740	2.00	1870	1.6	Silver*
SLRSO-4-C2-4840\#	\# 4840	2.00	2420	2.2	Silver
SLRSO-4-C2-6160\#	\# 6160	2.00	3080	1.7	Gray*
SLRSO-4-C2-7480\#	\# 7480	2.00	3740	1.4	Silver*

TYPE SLRSO DIMENSIONS (inches)

* with RED inner spring

Size	L	W	H	T	MBD	HCW	HCL	D	E	
SLRSO-B, B2	8	$1 / 2$	4	$1 / 4$	8	$3 / 4$	$3 / 8$	$5 / 8$	2	$3 / 4$

Illustration shows SLRSO-B housing which contains one (1) B or B2 spring. Not shown is SLRSO-1 housing which contains one (1) C2 spring, SLRSO-2 housing which contains two (2) C2 springs and SLRSO-4 which contains four (4) C2 springs.
Housing load ratings expressed in G's are based on tests with bolted connections to steel top and bottom.

Seismic Design Forces on Mechanical Units

Task: Determine the lateral forces (seismic) and required connections for HVAC equipment installed onto a floor or roof of a structure. The vertical adequacy of the structure for the weight of the equipment and other dead and live loads is beyond the scope of this section of the analysis and is by others unless specifically noted herein.

References: 2012 IBC (2014 OSSC) Section 1613.1
ASCE 7-10 Section 13.6 for mechanical components and systems

Criteria:

Seismic Design Category D, Component Importance Factor
$\mathrm{I}_{\mathrm{p}}=1.00$
Latitude $=45.528$
Longitude $=-122.662$
Site class D
Risk Category III
$\mathrm{W}_{\mathrm{p}}=24700 \mathrm{lb} \mathrm{h}=204 \mathrm{in}$
w $=144$ in
$\mathrm{l}=306$ in
$\mathbf{W}_{\text {curb }}=1000 \mathrm{lb}$
$h_{\text {curb }}=48$ in
Mapped acceleration parameters (Section 11.4.1)
at short period $\quad \mathrm{S}_{\mathrm{s}}=0.976$
at 1 sec period $\quad S_{1}=0.418$

Site coefficient at short period (Table 11.4-1)
$\mathrm{F}_{\mathrm{a}}=1.110$
at 1 sec period (Table 11.4-2)
$\mathrm{F}_{\mathrm{v}}=1.582$

Spectral response acceleration parameters
at short period (Eq. 11.4-1)
$S_{m s}=F_{a} \times S_{s}=1.083$
at 1 sec period (Eq. 11.4-2)
$S_{M 1}=F_{v} \times S_{1}=0.661$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Design spectral acceleration parameters (Sect 11.4.4) ${ }^{\text {gh }}$ shis in information is a product of the U.S. Geological Surver, we provide no warranty, expressed or implied, as to the
Source: http://geohazards.usgs.gov/designmaps/us/application.php
at short period (Eq. 11.4-3) $\quad S_{D S}=2 / 3 \times S_{M S}=0.722$
at 1 sec period (Eq. 11.4-4) $\quad S_{D 1}=2 / 3 \times S_{M 1}=0.441$

Application of OSSC and ASCE 7-10 Requirements:

James G. Pierson, Inc.

Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130

Project	OCC CHILLERS - CT-2, CT-3, and CT-4	Job no.
Location	777 NE MLK JR BLVD, Portland, OR	Date $5 / 1 / 2018$
Client	MFIA Inc, Consulting Engineers	Sheet no. Page 10 of 21

Section 13.3 Attachments for floor or roof mounted equipment greater than 400 lbs in weight need to be designed for seismic forces

Section 13.3-1 - Design for Total Lateral Force
Total design lateral force $\quad F_{p}=\frac{a_{p} C_{a} I_{p}}{R_{p}}\left(1+3 \frac{h_{x}}{h_{r}}\right) W_{p}$
Eq. 13.3-1

Except that: $\quad F_{p}>0.7 C_{a} I_{p} W_{p}$ and $F_{p} \leq 4 C_{a} I_{p} W_{p}$

Table 13.6-1 - Horizontal Force Factors, a_{p} and R_{p}
Electrical, mechanical and plumbing equipment and associated conduit and ductwork and piping. - $\mathbf{a}_{\mathrm{p}}=1.0$ and $\mathbf{R}_{\mathrm{p}}=2.5$

Unit on flat roof above mechanical room so $h_{x}=16 \mathrm{ft} h_{r}=\mathbf{1 6} \mathbf{f t}$

Load Combinations - Members and the connection design shall use the load combinations and factors specified in Section 2.3.2. The reliability/redundancy factor may be taken as 1.0 and Fp is substituted for Qe.

Design Lateral Force:

$$
\mathbf{F}_{\mathbf{p}}=\mathbf{0 . 4} * \mathbf{a}_{\mathbf{p}} * \mathrm{~S}_{\mathrm{DS}} * \mathrm{I}_{\mathrm{p}} / \mathrm{R}_{\mathrm{p}} *\left(1+2 * \mathrm{~h}_{\mathrm{x}} / \mathrm{h}_{\mathrm{r}}\right) * \mathrm{~W}_{\mathrm{p}} \quad \quad \mathbf{F}_{\mathbf{p}}=8559.792 \text { lbs Eq. 13.3-1 }
$$

Fp need not exceed $\mathrm{Fp}_{1}=1.6 * \mathrm{SDS} * \mathrm{I}_{\mathrm{p}} * \mathrm{~W}_{\mathrm{p}}=28532.639 \mathrm{lbs}$ Eq. 13.3-2
Fp shall not be less than $\mathrm{Fp}_{2}=0.3 * \mathrm{SDS} * \mathrm{I}_{\mathrm{p}} * \mathrm{~W}_{\mathrm{p}}=5349.870 \mathrm{lbs}$ Eq. 13.3-3

The design is controlled by $\mathbf{F}_{\mathbf{p}}=8559.792 \mathrm{lbs}$

$$
\mathbf{F}_{\mathbf{p c u r b}}=\mathbf{0 . 4} * \mathbf{a}_{\mathbf{p}} * \mathrm{~S}_{\mathrm{DS}} * \mathrm{I}_{\mathrm{p}} / \mathrm{R}_{\mathrm{p}} *\left(1+2 * \mathrm{~h}_{\mathrm{x}} / \mathrm{h}_{\mathrm{r}}\right) * \mathrm{~W}_{\text {curb }} \quad \mathbf{F}_{\text {pcurb }}=346.550 \text { lbs Eq. 13.3-1 }
$$

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Project	OCC CHILLERS - CT-2, CT-3, and CT-4	Job no.
	Location	777 NE MLK JR BLVD, Portland, OR	Date $\quad 5 / 1 / 2018$
	Client	MFIA Inc, Consulting Engineers	Sheet no. Page 11 of 21

Overturning:

Overturning will be controlled by Equation 2.3.2-7 of the Basic Load Combinations for Strength Design which is:

$$
0.9 \mathbf{D}+\mathbf{E}
$$

In this equation, according to ASCE 7 the value of E shall include

$$
\mathrm{E}=\mathrm{pQe}-0.2 \mathrm{Sds} \mathrm{D}=1.0 \mathrm{Qe}-\left[0.2 \times \mathrm{S}_{\mathrm{DS}} \times \mathrm{W}_{\mathrm{p}}\right]=\mathbf{Q e}-0.144 \mathbf{D}
$$

Therefore, when substituting Qe Equation 16-18 becomes $\quad \mathbf{0} 0.756 \underline{\text { D + E }}$

Assume Center of gravity of unit and curb is located at center of height. The following forces apply to allowable stress stability calculations using Equation 16-18 as modified for Qe

$$
\begin{aligned}
\text { Unit Mass }= & \begin{array}{l}
0.756 \mathbf{D} \\
\mathbf{F}_{\mathbf{p}}=8559.792 \mathrm{lbs}
\end{array} .18663 .42 \mathrm{lbs}
\end{aligned}
$$

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130		OCC CHILLERS - CT-2, CT-3, and CT-4	Job no.
	${ }^{\text {Location }}$	777 NE MLK JR BLVD, Portland, OR	${ }^{\text {Date }} \quad 5 / 1 / 2018$
	Client	MFIA Inc, Consulting Engineers	$\text { Page } 12 \text { of } 21$

```
Compute Stability about bottom of curb
h = 204.000 in
h/2=102.000 in
hcurb}=48.000 i
w = 144.000 in
w/2 = 72.000 in
```

Overturning_Moment $=\mathrm{F}_{\mathrm{p}} \times \mathrm{h} / 2+\mathrm{h}_{\text {curb }}$) $=1283968.758 \mathrm{lbs}$ in Curb Overturning_Momentc $=\mathrm{F}_{\text {pcurb }} \times \mathrm{h}_{\text {curb }}=16634.413 \mathrm{lbs}$ _in

Total Overturning Moment $=\mathbf{=} \mathbf{1 3 0 0 6 0 3 . 1 7 1}$ lbs_in
Restoring_Moment $=\quad($ UnitMass + UnitMassc $) \times$ w/2 $=1398169.740$ lbs_in

Safety Factor Against Overturning =Restoring_Moment/ TM $=\mathbf{1 . 0 7 5}$

From this calculation, it is demonstrated that there is some overturning and will need the benefit of hold down anchors. Need to anchor unit for sliding forces also.

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	${ }^{\text {Project }}$	OCC CHILLERS - CT-2, CT-3, and CT-4	Job no.
	Location	777 NE MLK JR BLVD, Portland, OR	Date $5 / 1 / 2018$
	Client	MFIA Inc, Consulting Engineers	Page 13 of 21

Wind Loads on Rooftop Structures and Equipment for buildings with $\mathrm{h}<=60 \mathrm{ft}, \mathrm{ASCE7}-10$ Sec 29.5.1
Lateral force , $\mathrm{F}_{\mathrm{h}}=\mathrm{q}_{\mathrm{n}}{ }^{*} \mathrm{GC}_{r}{ }^{*} \mathrm{~A}_{\mathrm{t}}-29.5-2$

The following table shows the calculation for lateral force and net uplift on roof top equipment along long and short directions :

Long Direction :

OTM $=\mathrm{F}_{\text {h-long }} \times$ Total Height/2 ; R.M = Total Weight \times Width/2
$\mathrm{T} / \mathrm{C}(\mathrm{lbs})=(\mathrm{O} . \mathrm{T} . \mathrm{M}-0.6$ R.M)/Width

Short Direction:

$\mathrm{OTM}=\mathrm{F}_{\text {h.ssort }}{ }^{*}$ Total Height/2; RM = Total weight * Length/2
$\mathrm{T} / \mathrm{C}(\mathrm{lbs})=(\mathrm{OTM}-0.6 \mathrm{RM}) /$ length

ASCE7-10,Sec 29.5.1 Windloads for Roof top Structures,h<=60ft

Unit Tag Component Data	MAU-1	Building Dimesnions	Wind Parameters		
Component Weight, Wp	24600	Building Length ,L	150	Basic Wind Speed,mph (Sec 26.5)	120
Curb Weight, W_{c}	1000	Building Width. B	150	Wind directionality Factor $\mathrm{K}_{\mathrm{d}}(\operatorname{Sec} 26.6)$	0.85
Total Weight, W	25600	Building Height, h	30	Exposure Category (Sec 26.7)	B
Component Height , H	17			Topographic factor $\mathrm{K}_{\mathrm{zt}}(\mathrm{Sec} 26.8)$	1
Component Length, I	25			velocity pressure coefficient $\mathrm{K}_{\mathrm{z}}(\mathrm{Sec} 29.3 .1)$	0.701
Component Width, W	12			velocity pressure q_{z} or q_{h} in psf (sec 29.3.2)	21.953
Height of Curb	1				

JOB NAME Oregon Convention Center
CUSTOMER MFIA Engineering
CUSTOMER P.O.
MASON M.I.
DWG. NO.

50\% Travel to Solid					
$\begin{gathered} \hline \text { SLRSO } \\ \text { Size } \\ \hline \end{gathered}$	Capacity (lbs)	Defl. (in)	$\begin{gathered} \text { SLRSO } \\ \text { Size } \end{gathered}$	Capacity (lbs)	Defl. (in)
B2-450	411	1.83	2-C2-2420	02020	1.67
B2-680	565	1.66	2-C2-3080	02570	1.67
C2-880	800	1.82	2-C2-3740	3120	1.67
C2-1210	1010	1.67	4-C2-4840	04040	1.67
C2-1540	1285	1.67	4-C2-6160	05145	1.67
C2-1870	1560	1.67	4-C2-7480	06245	1.67
2-C2-1760	01600	1.82			

SPRING DATA

Size	Spring (in)	Free Ht. (in)	Ratio Kx/Ky	Ratio OD/OH
B	$23 / 8$	4	$0.55-0.65$	$0.95-1.00$
B2	$23 / 8$	$41 / 2$	$0.80-0.90$	$1.19-1.48$
C2	$27 / 8$	5	$0.63-0.85$	$0.96-1.15$

\#Published ratings allow minimum 25% additional travel to solid. For 50% minimum specified use the ratings shown above. All springs without "\#" have additional travel to solid equal to 50% of the rated deflection.

TYPE SLRSO RATINGS

Size	Rated Capacity (lb)	Rated Defl. (in)	Spring Constant (lb/in)	Max. Horiz. Housing G Rating	Spring Color
SLRSO-B-20	20	2.40	8	70.0	Tan
SLRSO-B-26	26	2.18	12	53.9	Wht/Blue
SLRSO-B-35	35	2.20	16	40.0	Purple
SLRSO-B-50	50	2.20	24	28.0	Wht/Red
SLRSO-B-65	65	2.10	31	21.6	Brown
SLRSO-B-85	85	2.10	40	16.5	Wht/BIk
SLRSO-B-115	115	2.00	57	12.2	Silver
SLRSO-B-150	150	2.00	75	9.3	Orange
SLRSO-B2-210	210	2.12	99	6.8	Silver
SLRSO-B2-290	290	2.00	144	4.9	Blue
SLRSO-B2-450\#	450	2.00	224	3.2	Tan
SLRSO-B2-680\#	680	2.00	340	2.1	Gray
SLRSO-C2-125	125	2.50	50	35.2	Purple
SLRSO-C2-170	170	2.40	70	25.9	Brown
SLRSO-C2-210	210	2.30	90	21.0	Red
SLRSO-C2-260	260	2.20	120	16.9	White
SLRSO-C2-330	330	2.00	165	13.3	Black
SLRSO-C2-460	460	2.00	230	9.6	Blue
SLRSO-C2-610	610	2.00	305	7.2	Green
SLRSO-C2-880\#	880	2.00	440	5.0	Gray
SLRSO-C2-1210\#	1210	2.00	605	3.6	Silver
SLRSO-C2-1540\#	1540	2.00	770	2.9	Gray*
SLRSO-C2-1870\#	1870	2.00	935	2.4	Silver*
SLRSO-2-C2-340	340	2.40	140	17.7	Brown
SLRSO-2-C2-420	420	2.30	180	14.3	Red
SLRSO-2-C2-520	520	2.20	240	11.6	White
SLRSO-2-C2-660	660	2.00	330	9.1	Black
SLRSO-2-C2-920	920	2.00	460	6.5	Blue
SLRSO-2-C2-1220	1220	2.00	610	4.9	Green
SLRSO-2-C2-1760\#	1760	2.00	880	3.4	Gray
SLRSO-2-C2-2420\#	2420	2.00	1210	2.5	Silver
SLRSO-2-C2-3080\#	3080	2.00	1540	1.9	Gray*
SLRSO-2-C2-3740\#	3740	2.00	1870	1.6	Silver*
SLRSO-4-C2-4840\#	4840	2.00	2420	2.2	Silver
SLRSO-4-C2-6160\#	6160	2.00	3080	1.7	Gray*
SLRSO-4-C2-7480\#	+ 7480	2.00	3740	1.4	Silver*

* with RED inner spring

TYPE SLRSO DIMENSIONS (inches)

Size	L	W	H	T	MBD	HCW	HCL	D	E	
SLRSO-B, B2	8	$1 / 2$	4	$1 / 4$	8	$3 / 4$	$3 / 8$	$5 / 8$	$23 / 4$	7
SLRSO-C2	9	$1 / 2$	5	$1 / 4$	8	$3 / 4$	$3 / 8$	$5 / 8$	$31 / 2$	$71 / 2$
	$5 / 8$	$13 / 8$								
SLRSO-2-C2	14	5	$1 / 4$	$83 / 4$	$3 / 8$	$5 / 8$	$31 / 2$	$121 / 4$	$5 / 8$	$13 / 8$
SLRSO-4-C2	13	$3 / 4$	8	8	$3 / 4$	$3 / 8$	$3 / 4$	$61 / 4$	11	$7 / 8$

Illustration shows SLRSO-B housing which contains one (1) B or B2 spring. Not shown is SLRSO-1 housing which contains one (1) C2 spring,
SLRSO-2 housing which contains two (2) C2 springs and SLRSO-4 which contains four (4) C2 springs.
Housing load ratings expressed in G's are based on tests with bolted connections to steel top and bottom.
PLAN VIEW OF MOUNT LOCATIONS
TAG: 8-Fan Cooling Tower
UNIT : Tower Tech TTXL-08

NOTE: ALL MEASUREMENTS ARE OD TO OD OF FOOTPAD. ALL GIVEN DIMENSIONS ARE WITHIN $\pm 1 / 8$ ".

NOTE: ALL MEASUREMENTS ARE OD TO OD OF FOOTPAD.
ALL GIVEN DIMENSIONS ARE WITHIN $\pm 1 / 8^{\prime \prime}$.

