SECTION 23 09 23 - DDC CONTROLS

PART 1 - GENERAL SYSTEM DESCRIPTION

1.1 CONTROL CONTRACTOR/MANUFACTURER QUALIFICATIONS

- A. Control Contractor is Environmental Controls Corp., 15954 S.W. 72nd Ave. Tigard, OR 97224.
- B. The existing Alerton Control System is to be modified for control of new modified equipment.

1.2 RELATED SECTIONS

- A. Drawings and general provisions of Contract, including General and Supplementary Conditions, Mechanical Special Conditions, Electrical Special Conditions and Division 1 Specification.
- B. Coordination with Other Trades:
 - 1. This section specifies cooperation of the Control Contractor (the combination of installer and programmer hence forth) with other trades and including balancing firm to assure proper arrangement of control items. Control valves, dampers, wiring, thermostat wells, and other control devices that are to be built into the field assembled ductwork, piping, or wiring systems shall be furnished by the Control Contractor and installed under other sections of the specification as directed by the Control Contractor and indicated in other portions of the specifications and drawings.
 - 2. The Control Contractor shall insure that the DDC system communicates successfully with other equipment (e.g., air handling units, packaged rooftop units, heat pumps, motors, actuators, etc.). Note: the equipment supplier is responsible for the proper performance of their equipment (assuming the proper signal are sent/received from the BAS). The control Contractor is responsible for all system sensors, including those which are factory installed.
 - 3. Electrical Wiring: All wiring required for work under this section of the specification shall be provided under this section of the specification unless otherwise specified.
 - 4. Electrical wiring power for control panels, control devices, and sensors
 - a. Power for control units, control devices and sensors shall be coordinated with the air handling manufacturer for the project and/or the Owner.
 - b. Contact locations in starter control circuits. All contacts controlling motor starters, including overload contacts, shall be located on the hot side of the coil (ungrounded control power leg). Coordinate this requirement with the air handling manufacturer for the project.
 - c. Extend power to damper actuators.
 - 1) Actuators will be powered at 24 VAC.
 - 2) At each auxiliary panel location, furnish and install a 24 VAC transformer with 20 VA of capacity for each actuator installed and served from the panel.

PERMIT SET 06.05.2018

- 3) Furnish and install a fused terminal in the +24 VAC lead and a disconnecting terminal in the neutral lead of the power cable to each actuator.
- 5. Testing, Adjusting and Balancing: If necessary, The Controls Contractor shall operate the BAS to assist the TAB Contractor.

1.3 QUALITY CONTROL – CODES AND STANDARDS

- A. All work, materials, and equipment shall comply with the rules and regulations of all codes and ordinances of the local, state, and federal authorities. Such codes, when more restrictive, shall take precedence over these plans and specifications, As a minimum, the installation shall comply with the current editions in effect 30 days prior to receipt of bids for the following codes:
 - 1. National Electric Code (NEC)
 - 2. Uniform Building Code (UBC), Oregon Structural Specialty Code
 - 3. Uniform Mechanical Code (UMC), Oregon Mechanical Specialty Code
 - 4. Underwriters Laboratories (UL)
 - 5. National Electric Manufacturers' Association (NEMA)
 - 6. National Fire Prevention Association (NFPA)
 - 7. American Society Of Heating, Refrigeration, And Air Conditioning Engineers (ASHRAE)
 - 8. Instrument Society Of America (ISA)
 - 9. National Institute of Standards and Technology (NIST).
- B. Meet all of the local authorities and State Fire Marshal code requirements for normal operating and smoke mode functions.

1.4 SUBMITTALS

- A. Shop drawing submittals are required for the following, in accordance with Section 23 05 00. The Contractor shall not start the project until the Shop Drawings have been submitted and approved. Shop drawings shall include:
 - 1. All control drawings shall be provided in same format and be an extension of the existing 2015 Control Submittals provided for this building. Owner shall provide shop drawings files during submittal phase to Contractor. A standalone control document for just this chiller revision work will not be allowed.
 - 2. All submittals should be provided on paper (with legible font type and size).
 - 3. All drawings should be labeled TC (temperature control) rather than being referenced within the mechanical or electrical divisions. Sheets shall be consecutively numbered
 - 4. One drawing per modified HVAC system. Drawing should include point descriptors (DI, DO, AI, AO), addressing, and point names. Each point names should be unique (within a system and between systems). For example, the point named for the mixed air temperature for AH#1, AH #2, and AH #3 should not be MAT but could be named AH #1 MAT, AH #2 MAT, and AH #3 MAT. The point names could be logical and consistent between systems and AHs. The abbreviation or short hand notation (e.g., MAT) should be clearly defined in writing by the Control Contractor. Naming standard will be decided on during meeting between Engineer, Control Contractor, and Owner. Convention shall match Phase I work.

PERMIT SET 06.05.2018

- 5. Floor plans depicting revision to BAS control devices (control units, control devices, gateways, LAN interface devices, actuators, sensors, motor control centers, etc.) in relation to mechanical rooms, HVAC equipment, and building footprint.
- 6. DDC System Engineering diagram indicating revision to schematic location of all Control Units, workstations, LAN Interface devices, gateways, etc. Indicate address and type for each Control Unit. Indicate protocol, baud rate, and type of LAN (per Control Unit).
- 7. For each drawing, include a schematic flow diagram of each air and water system showing fans, coils, dampers, valves, pumps, heat exchange equipment, control devices, etc. Label each control device with setting or adjustable range of control. Label each input and output with the appropriate range.
- 8. Electrical wiring diagrams shall include both ladder logic type diagrams for motor start, control, and safety circuits and detailed digital interface panel control point termination diagrams with all wire numbers and terminal block numbers identified. Indicate all required electrical wiring. Provide panel termination drawings on separate drawings. Ladder diagrams shall appear on system schematic. Clearly differentiate between portions of wiring that are existing, factory-installed and portions to be field-installed.
- 9. Show all electric connections of the controls system to equipment furnished by others complete to terminal points identified with manufacturer's terminal recommendations.
- 10. Control Contractor shall provide one complete drawing that shows the equipment (fan unit, boiler, chiller, etc.) manufacturers wiring diagram with the control Contractors wiring diagram superimposed on it. Supply hard copy.
- 11. Provide revision to sequence of operation based on sequence in these documents, as discussed with Engineer and Owner and as modified based on site conditions and normal programming protocol. Provide details such as levels controlled to and point designations. Simply copying the sequence from these documents is not sufficient.
- 12. Provide complete panel drawings for new panels or modified panels that are:
 - a. Clearly labeled.
 - b. Drawn to scale
 - c. Show the internal and external component arrangement so that the operators can identify the components by their position if the labels come off
 - d. Wiring access routes should also be identified so that Class 1 wiring is separated from Class 2 and 3 and so high voltage wiring is segregated from low voltage wiring and tubing.
 - e. If existing panel is modified provide new drawings showing changes per above.
- 13. Complete identification of all control devices (manufacturer's type, number, and function).
- 14. Provide all necessary BACnet-compliant hardware and software to meet the system's functional specifications. Provide Protocol Implementation Conformance Statement (PICS) for New Windows-based control software and any new controller in system, including unitary controllers.
- 15. A set of drawings showing the details of the valve and valve actuator installation for each valve, required for operation and maintenance manuals only. This should include:

PERMIT SET 06.05.2018

- a. Action (normally open or closed)
- b. Manufacturer make and model
- \mathbf{c} . $\mathbf{C}_{\mathbf{v}}$
- d. Close off rating
- e. Flow rate
- f. Actuator spring range
- g. Cavitation coefficient (where applicable)
- h. Special construction features
- 16. Damper schedule should include:
 - a. Action (normally open or closed)
 - b. Direct or reverse actuation
 - c. Manufacturer make and model
 - d. Design pressure drop at full flow
 - e. Leakage rate
 - f. Operating range
 - g. Flow rate
 - h. Actuator requirements
 - i. Actuator spring range
 - j. Special construction features (U.L. listed smoke damper, etc.)

B. Record Documents:

- 1. For any modification to the control system provide a complete set of control drawings with as-installed equipment and operating sequences on paper and in electronic format (AutoCAD). "As-built" (i.e., as-installed and debugged and after system acceptance) documentation shall include the following as minimum:
 - a. All data specified in the shop drawings section in its final "asbuilt" form.
 - b. Schematic outline of the overall control system for quick reference
 - c. Adequate record of the work as installed, including exact location of control panels and the wiring route (using TC documents, Section 1.04 A).
 - d. Blue prints shall include sequence of operation.
 - e. System hardware specification data which provides a functional description of all hardware components.
 - f. System engineering information which provides all of the information for the system set-up, definition and application.
 - g. System database information that provides the point names and application data programmed into the system.
 - h. All of the information, data, procedures and drawings shall be supplied in the form of manuals.
- 2. Provide as-installed (after system acceptance) control logic diagrams showing all points (real and virtual).
- 3. DDC systems that use line-based programming must reference line code number with control logic diagrams and/or with sequence of operation text. Control Contractor shall discuss final format with owner.

PERMIT SET 06.05.2018

- 4. As required for new systems provide licensed electronic copies of all upgraded software for each workstation and laptop. This includes, but is not limited to: project graphic images, project database, trouble-shooting and debugging programs, project-specific application programming code and all other software required to operate and modify the programming code (including software at system level, primary control units, secondary control units, and all communication software). Any hardware devices (cables, protection devices) required to operate the software/hardware shall also be provided.
- 5. The Control Contractor shall document deviations from the shop drawing submittals. Documentation should include what equipment was changed and the reason for the change.
- 6. Provide copy of final test reports.

C. Operating and Maintenance Materials:

- 1. Provide any new inserts to current O & M documents to provide information for new devices.
- 2. Provide Operation and maintenance data on new equipment requiring service or adjustment (prior to and after final acceptance).
- 3. Provide user guides and programming manuals for any new hardware and software.
 - a. A reference manual shall be furnished and shall contain, as a minimum, an overview of the system, its organization, the concepts of networking and central site/field hardware relationships. It shall be a complete guide to operating all aspects of the software system, including activating the system, use of the mouse, description of all menus, establishing setpoints and schedules, downloading or uploading information to or from field hardware, generating or collecting trends, alarms and reports, backing up system software and data files and interface with third party software.
 - b. Manuals for advanced programming (for each controller type and for all workstations) shall be provided.
- 4. Provide a Bill of Materials with each new or altered schematic drawing. List all devices/equipment and match to schematic and actual field labeling. Provide quantity, manufacturer, actual product ordering number, description, size, accuracy, operating ranges (voltage, temperature, pressure, etc.), input/output parameters, etc.
- 5. Field copies of wiring for new or altered Primary and Secondary Control Units. (Laminated and permanently affixed in or above controller).
- 6. For new equipment not manufactured by the Control Vendor, an alphabetical list of system components with the name, address and 24-hour telephone number of the company responsible for servicing each item during the first two years of operation shall be provided.
- 7. Operating and maintenance instructions for each new piece of equipment that includes:
 - a. Emergency procedures for fire or failure.
 - b. Start-up, operation, maintenance, disassembly and shutdown procedures.
 - c. Maintenance instructions for each piece of equipment.
 - d. Proper lubricants and lubricating instructions.
 - e. Cleaning, replacement and/or adjustment schedule.
 - f. Product data on each piece of equipment, including damper and valve information noted earlier.

PERMIT SET 06.05.2018

- 8. Points list shall include all physical input/output and virtual points. Points list shall be provided in hard copy and shall include:
 - a. Name
 - b. Address
 - c. Scanning frequency
 - d. Engineering units
 - e. Offset calibration and scaling factor for engineering units
 - f. High and low alarm values and alarm differentials for return to normal condition
 - g. Default value to be used when the normal controlling value is not reporting.
 - h. Message and alarm reporting as specified.
 - i. Identification of all adjustable points
 - j. Description of all points
- 9. Control Logic documentation shall include:
 - a. Drawings documenting control logic for new or revised aspects of the BAS including control units, controlled devices, sensors, etc.
 - b. A detailed sequence of operation (see Part 6) should be submitted on separate sheets for each new or revised AH or HVAC system. The text description of the sequence of operation should include:
 - 1) Logic control statement (i.e., describe control loop process)
 - 2) Setpoints and throttling ranges, deadbands, and differentials for temperature and pressure variables, gains, reset schedules, etc.
 - 3) Limits/conditions and interlocks
 - 4) Measured variables (e.g., mixed air temperature)
 - 5) Variables to communicate to/from the network
 - c. Control diagrams should identify
 - 1) System being controlled (attach abbreviated control logic text)
 - 2) All DO, DI, AO, AI points
 - 3) Virtual points
 - 4) All functions (logic, math, and control) within control loop
 - 5) Legend for graphical icons or symbols
 - 6) Definition of variables or point names (e.g., OAT = outside air temperature)
 - 7) Define values (e.g., 1 = on, 0 = off)
 - 8) Voltage, amperage, or resistance input/output signal for all sensors and controlled devices
- D. Conformance Certificates: Upon substantial completion of the work, supply and turn over all required inspection certificates from governing authorities to certify that the work as installed conforms to the rules and regulations of the governing authorities.
- E. Warranty Certificates:
 - 1. Warrant all new work as follows:
 - a. Labor and materials for the control system specified shall be warranted free from defects for a period of 36 months after final completion and acceptance. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no additional cost or reduction in service to the owner.
 - b. The Control Contractor shall respond to the owner's request for warranty service within 24 hours during normal business hours.

PERMIT SET 06.05.2018

- c. The Control Contractor shall respond to the owner's request for Emergency service during the warranty period within 4 hours.
- 2. Emergency service shall be available 8,760 hours per year.
- 3. Five (5) non-warranty emergency service calls shall be provided free of charge per year.
- 4. Emergency service rates for additional assistance shall be provided.
 - a. The Contractor shall provide unlimited phone technical support to the owner during the warranty period. If the technical support location of the Contractor is outside of the toll free calling area for the customer, the Contractor shall have a toll free number or accept collect calls for the purpose of providing technical support.
 - b. The Contractor shall provide technical support bulletin service (if available) for two years.
 - c. During the warranty period parts for the DDC system shall arrive at the site within 24 hours of placing an order.
 - d. At the end of the final startup, testing, and commissioning phase, if equipment and systems are operating satisfactorily to the Engineer, the Engineer shall sign certificates certifying that the control system's operation has been tested and accepted in accordance with the terms of the specifications listed in Section 230923 (see 6.2 thru 6.3). The date of acceptance shall be the start of the warranty period.
 - e. All work shall have a single warranty date, even when the owner has received beneficial use due to an early system startup.
 - f. Operator workstation software, project-specific software, graphic software, database software, and firmware updates which resolve known software deficiencies as identified by the Control Contractor shall be provided at no charge during the warranty period.
 - g. Any hardware or software discovered to incorrectly process dates starting January 1, 2000 through the year 2040 shall be replaced by the Control Contractor at no cost to the owner.
 - h. Control Contractor shall be available for a final check and adjustment of the DDC system before the warranty period ends. The final check will include input from the maintenance staff as well as the Engineer.

1.5 DELIVERY AND STORAGE

A. Provide factory-shipping cartons for each piece of equipment and control device not factory installed. Provide factory applied plastic end caps on each length of pipe and tube. Maintain cartons and end caps through shipping, storage, and handling as required to prevent equipment and pipe-end damage, and to eliminate dirt and moisture from equipment and inside of pipe and tubes. Store equipment and materials inside and protected from weather.

1.6 DISCREPANCIES

A. Any items not included in the specification but referred to in the Appendix and/or Drawings in reference to this project and any other incidentals not referred to but required as a basic element to the overall performance and/or successful completion of the work shall be installed as part of this Contract.

PART 2 - PRODUCTS

2.1 BASIC MATERIALS, CONTROL DEVICES, SENSORS

- A. Installation of some of the equipment in this section may be the responsibility of other Contractors (see 1.5).
- B. All sensors and equipment related to or connected to the DDC system shall be installed according to manufacturer's recommendations.

2.2 WIRING, CONDUIT, AND HANGERS

- A. To supply, install and connect all conduits, boxes and wires between all the different components related in this section including all line voltage to the equipment.
- B. Provide all necessary field wiring and devices from the point of connection indicated on the drawings. Bring to the attention of the Project Manager in writing, all conflicts, incompatibilities, and/or discrepancies prior to bid or as soon as discovered.
- C. Field Wiring: It is the intent of these specifications that all systems shall be complete and operable. Refer to all drawings and specifications to determine voltage, phase, circuit ampacity and number of connections provided.
- D. All wiring and fiber optic cable in the central plant, tunnels, and plenums to be supported by B-line Bridle rings or equal. All wiring and fiber optic cable in the hallways, rooms, and other public areas shall be in conduit unless noted otherwise in section H.
- E. All wires in Bridle Rings or conduit shall follow building lines (i.e., wires in plenum space shall run within several inches of the wall and shall NOT run in the middle of the space). Those areas of the building with RA plenum ceilings where wire is routed above that wire shall be plenum rated or routed in conduit.

F. Wire:

- 1. Wire and cable of the sizes and types shown on the plans and/or hereinafter specified shall be furnished and installed by the Control Contractor. All wire and cable shall be new soft drawn copper and shall conform to all the latest requirements of the National Electrical Code, IPCEA, and shall meet the specifications of the ASTM.
- 2. All control wiring to be copper stranded TEW-105, with appropriate gauge in accordance with the Codes. The minimum gauge used to be 16 AWG.
- 3. Input/Output Wiring: Wiring serving inputs and outputs from the BAS shall be cables consisting of single or multiple twisted individually shielded pairs. Each pair shall have an independent shield with drain wire. Cables installed with out conduit shall be plenum rated and comply with NEC article 725. Where automation input/output wiring is run in cable tray furnish and install conductors or multi-conductor cable rated for use in cable trays per NEC articles 340 and/or 725. Conductors shall be minimum #18 wire gauge.

PERMIT SET 06.05.2018

- 4. Power Conductors: All feeder and branch circuit wire shall be 600 V insulated of THHN type unless shown or specified to be otherwise. No wire less than No. 12 gauge shall be used except for control circuits or low voltage wiring. Wire sizes No. 14 to No. 10 shall be solid except where otherwise indicated. Wire sizes No. 8 and larger shall be stranded. All wire sizes shown are American Wire Gauge sizes. Where power conductors are run in cable tray, furnish and install conductors or multiconductor cable rated for use in cable trays per NEC articles 340 and/or 725.
- 5. All the conductors used for signals from the Controllers and field sensors must be shielded two wire, 18 AWG. with a drain wire. Conductor model 8760 from Belden is to be used or approved alternative by Project Manager.
- 6. All power wiring to be copper stranded RW 90 type, with appropriate gauge in accordance with the Codes. The following color code must be applied: line voltage to be black and/or white, ground to be green.
- 7. Acceptable Manufacturers: Cable and wire shall be a standard type as manufactured by General Electric Company, National Electric Company, U. S. Rubber Company, Simplex, General Cable Company, Carol, Anaconda, Rome, Southwire, Belden, Alpha, Houston Wire and Cable, or ITT Royal.

G. Wiring Installation:

- 1. All wires shall be continuous from outlet to outlet and there shall be no unnecessary slack in the conductors.
- 2. All wire terminations will be identified using rail terminal strips (see 5.11)
- 3. All drain wires must be grounded at the source end. The other end must be protected with a dielectric material (tape).
- 4. All control wiring (24 V and more) must be in a separate conduit from the shielded conductors.
- 5. Pull-Box and Junction Box:
 - a) Pull boxes and junction boxes shall be installed where indicated on the drawings or where required to facilitate wire installation.

 Locate in conjunction with other trades so as to install without conflict with other materials or equipment.
 - b) A pull-box will be located at every 50'.
 - c) All switch, pull, junction boxes, etc., shall be hot dipped galvanized or sherardized, concrete tight, with interlocking ring or multiple point locking devices. Connectors shall be three piece. Indentation fittings are not acceptable.
 - d) In suspended ceilings, all boxes must be installed on the structure.
 - e) Boxes shall be attached by fasteners designed for the purpose and shall provide adequate mechanical strength for future maintenance.
 - f) Junction and pull boxes not dimensioned shall be minimum 4 inch square.
- 6. Care shall be used to avoid proximity to heat ducts and/or steam lines. Where crossings are unavoidable, conduit shall clear covering of line by at least six inches.

PERMIT SET 06.05.2018

- 7. Motor Interlock Wiring: Interlock circuit wiring shall be No. 14 solid or stranded wire. Stranded wire only shall be used where wiring is used for flexible wiring harnesses. Stranded control wire shall be provided with crimp type spade terminators. Interlock circuit wiring shall be color coded or numbered using an identical number on both ends of the conductor. Wire numbers shall be installed before conductors are pulled. Where motor interlock conductors are run in cable tray, furnish and install conductors or multiconductor cable rated for use in cable trays per NEC articles 340 and/or 725.
- 8. All splices, taps, and terminations shall be made at outlet, junction, or pull boxes. Wire to No.6 gauge shall be spliced using Scotchlok wire nuts. No Bakelite wirenuts shall be used. Wire No. 6 and larger shall be spliced using solderness connectors as manufactured by Penn Union Company. Splices No. 6 and larger shall be insulated by taping with plastic vinyl tape as manufactured by Minnesota Mining and Manufacturing Company. Splices shall not be permitted in automation input and output wiring without specific written authorization from the Project Manager. If such a splice is approved, the location of the splice shall be clearly documented on the "As Built" drawings. Splices in automation wiring, if necessary, shall be made using Thomas&Betts STA-KON connectors installed per the manufacturer's directions to maintain NEMA specified voltage drops and wire retention forces.

9. Grounding:

- a. The Contractor shall extend existing equipment grounding systems. The Contractor shall use only approved grounding clamps and connectors as manufactured by Penn-Union, Burndy or O-Z Mfg. Company.
- b. The conduit system of the 480/277 and 208Y/120 volt systems shall be continuous and shall be used as the static grounding conductor, except for circuits installed in flexible conduit. Install a green grounding conductor inside all flexible conduits and extend to the nearest outlet or junction box. Install a green grounding conductor inside all non-metallic conduits or raceways.
- 10. Wiring to all devices shall be new. The intention of these specifications is to provide the owner with the maximum flexibility in scheduling of the project by forcing the installation of parallel systems for bidding purposes. Installation of the new system to limit down time and cut over time is the intension. During construction if all of the below are true the existing wiring may be reused:
 - a. if schedule permits.
 - b. if at the owners discretion.
 - c. if existing wiring to devices is tested and is sound.
 - d. if existing wiring is installed per new wiring means and methods.

H. Conduit:

- 1. Conduit Material:
 - a) All wiring to be in E.M.T. type conduits unless in plenum or otherwise noted below.
 - 1) Above accessible ceilings open cable with bridle ring support is allowed.

PERMIT SET 06.05.2018

- 2) Routed in corridors or other finished spaces on top of exposed sheet metal ducts supported with open wire way devices attached to the center top of the duct is allowed. Wire shall not be visible under casual observation of the installation.
- 3) 12 ft. or more above the floor in mechanical rooms where supported per specifications.
- b) All conduits to be a minimum of 1/2".
- c) All flexible conduits will not exceed 48" in length and are to be used only in areas where vibrations and/or expansion joints are present.
- d) Flexible conduit to be used for connecting any element to its conduit. The length of this flexible conduit will not exceed 48".
- e) Jacketed flexible steel conduit (Sealtite) shall be used where flexible conduit connections are required outdoors and at connections to all motorized equipment and motors outdoors.
- f) In damp areas, the conduit and related equipment must be suitable for the application.
- g) Electrometalic tubing shall be installed for all exposed work and for all concealed work in applications where conduit is required.
- h) Conduit shall be by Allied, Triangle, Republic, Youngstown, Carlon, Rob Roy, or approved equal.
- i) For exposed installations where the conduit cannot be run in ceiling spaces, wall cavities or attics, surface-mounted raceway (wire mold) is acceptable. No EMT is allowed in these locations. Provide samples for size and color selection.

2. Conduit Installation:

- a) All wiring in mechanical rooms at heights below 12 feet must be run in conduit. Otherwise, wiring in all other open areas must have conduit (at all heights). Existing conduit runs where compliant with these specifications may be re-used.
- b) All conduits to be installed in a concealed manner where possible and shall be installed parallel to the lines of the building.
- c) All exposed conduits shall be installed parallel or at right angles to the building walls or floors.
- d) Conduit bends shall be made with standard hickeys of proper size; radius of bends to be at least 6 times the diameter of the conduit. Runs between outlets shall not contain more than the equivalent of three quarter bends. Conduit runs shall be continuous from outlet to outlet, outlet to cabinet, etc.
- e) Conduits shall be installed with pitch toward outlet box wherever possible. All heavy wall conduits shall have two locknuts and a bushing at each termination outlet box, junction box, etc., except where terminated in a threaded hub. Fittings on electrometalic tubing shall be compression type.
- f) A bushing shall be used where conduit enters a panel box. Bushing for No. 4 AWG or larger shall be insulated type with provisions for grounding as type "BL" made by O-Z Electric Company, or approved equal.
- g) Expansion fittings shall be provided at all conduits across the building expansion joints. Fittings shall be Type "AX" or "TX" as made by O-Z Electric Company, or approved equal. Provide copper bonding jumper at each expansion fitting.

PERMIT SET 06.05.2018

- h) All ½" conduit to be supported every 6', the supports will be located at the connector end of the conduit.
- i) Exposed conduit shall be securely fastened in place on maximum 5 ft. intervals for 3/4" through 2-1/2 inch nominal sizes. Supports may be one hole malleable straps or other approved devices. No perforated metal straps will be permitted.
- j) Any exposed conduit proposed outside mechanical rooms or mechanical spaces shall be reviewed by Project Manager and approved prior to installation.

I. Wireway:

- 1. Furnish and install at all control panel locations a NEMA 1 lay-in wireway system to bring cable into and out of the panel as detailed on the drawings and specified in this section. Furnish 3-way wireways at each panel location: one for Class 1 wiring, 1 for Class 2 and Class 3 wiring. Panels at units to be NEMA 3R or better.
- 2. Wireway systems at locations where cables are to be run without conduit or in a cable tray shall consist of a connection to the control panel with a vertical extension to 8'-0" or the pipe rack or cable tray level, whichever is higher. The vertical section shall terminate in a 90° fitting with a closure plate. The closure plate shall be provided with a conduit nipple with locknuts and bushings as a wire entry point into the square duct. The conduit nipple shall be one size smaller than the wireway it is associated with.
- 3. Wireway systems at locations where cables are to be run in conduit shall consist of a horizontal section of wireway with a length equal to the control panel width and located above the control panel and connected to the control panel with three conduit nipples, locknuts, and bushings; one for tubing, one for Class 1 wiring and one for Class 2 and 3 wiring. Conduits for cable runs shall terminate on the wireway.
- 4. The intent of the wireway configurations outlined above is to provide a method for adding input and output wiring to the control panel without having to drill directly into the electronics enclosure after the system is online and running and to provide sufficient area to land field conduits while maintaining appropriate circuit segregation for wire entry into the controller enclosure. The installation of wireway shall be made with this consideration in mind.

J. Hangers and Anchors:

1. Where control system tubing is run on trapezes and/or hangers used by and or installed by other trades, supports for the trapezes shall be coordinated by all trades using the trapeze to assure that the anchor system is not overloaded and is sufficient for the load imposed including a margin of safety and seismic considerations. Under no circumstances shall a trapeze or hanger system installed by the electrical trades be used to support work by any other trade, nor shall the electrical trades use the trapezes installed by any of the other trades for the support of electrical equipment, all as required by the National Electric Code. Similarly, under no circumstances shall a trapeze or hanger system installed by the sprinkler trades be used to support work by any other trade, nor shall the sprinkler trades use the trapezes installed by any of the other trades for the support of sprinkler systems or equipment, all as required by NFPA 13, Standard For The Installation Of Sprinkler Systems.

PERMIT SET 06.05.2018

- 2. Anchors to be loaded in tension for use in existing concrete structure and anchors loaded in tension and not cast in place shall be epoxy resin set anchors installed per the manufacturers recommendations for technique, size, loading, embedment, etc. Where anchors are loaded in shear at these locations, suitably sized and installed wedge type anchors may be used.
- 3. In all cases, anchor loading shall be based on hanger spacing, weight of the pipe to be supported when full and insulated, weight of any additional loads imposed upon the anchor, wind loading, seismic loading, quality of the material that the anchor is being installed in, etc. The Control Contractor shall verify in the field that the anchors used and the materials that they are being installed in are suitable for the load imposed and shall bring any problems to the attention of the Project Manager in writing immediately and not proceed without direction from the Project Manager.
- 4. Wedge type anchors shall be Hilti Kwik Bolt II. Adhesive anchors shall be Hilti HVA.

2.3 UNIT CONTROL PANELS (INSTALLATION AND FABRICATION)

- A. Enclosed cabinet type with hinged door for mounting all relays, switches, thermometers, and miscellaneous controls not requiring direct mounting on equipment such as sensing elements, valves and damper motors. Provide cabinet for each control unit adjacent to each system.
- B. Each panel shall have power conditioners on electrical supply, Crucial Power Product MI Series.
- C. Control panels shall be fabricated to match the approved shop drawings submitted by the control Contractor. Fabrication shall be in a neat and workmanlike manner and shall facilitate repair, maintenance, and adjustment of the equipment contained therein.
- D. Control panels shall be fabricated and laid out to incorporate the following features:
 - 1. Identification of all internally and cover mounted devices. Cover mounted labels shall be engraved labels as specified in this section (5.10). Labels shall be mounted adjacent to the device they are associated with so that replacement of the device does not eliminate the label. Provide laminated control diagram at each panel.
 - 2. Electrical wiring shall enter the panel from the top, bottom, and/or side of the left side of the panel or as required by the panel supplier to meet NEC requirements.
 - 3. All wires entering or leaving the panel shall pass through a rail terminal strip. Where the wires are part of a current loop transmission circuit, the terminals shall be the disconnecting link type. Terminals shall be identified with a number that corresponds to the terminal number on the job wiring diagram. Rail terminal strip specifications include:

PERMIT SET 06.05.2018

- a. General: Terminal rail assemblies shall be fabricated from components selected from the product line of one manufacturer. Sizes (heights, widths, and profiles) of each terminal shall be selected to be compatible with the other terminals on the rail. Terminal units located at the end of a rail or adjacent to terminals with a different profile (for example, where disconnecting terminals are located next to resistor terminals) shall be provided with end caps to completely close off the terminal unit interior components from the local environment. End stops shall be provided for on all rails to secure the terminals located on the rail in place.
- 4. All internal wiring and tubing shall be run inside plastic wiring/tubing duct as manufactured by Tyton. Wire duct shall be sized to hold the required number of wires and tubes without crimping the tubes and with sufficient space to allow wiring and tubing to be traced during troubleshooting operation.
- 5. Wires that pass from the panel interior to cover mounted devices shall be provided with a flex loop that is anchored on both sides of the hinge. Wiring running to cover mounted devices shall be bundled using cable ties
- 6. Provide strain relief type cord and cable connectors for all cables that leave the panel as individual cables not in conduit.
- 7. All control panels shall be provided with removable sub panels to allow the panel enclosures to be installed at the job site during rough in while the panels are fabricated off-site for later installation.
- 8. Provide one under cabinet type fluorescent light with switch mounted internally in the control panel. Panels with external light hoods will also be acceptable if the light will illuminate the panel interior with the door open.
- 9. Provide one duplex outlet mounted inside the control panel and separately fused with a non-time delay fuse at 15 A at any panel location containing electronic or electrical control components. This receptacle may be served from the control panel 120 VAC power source.
- 10. Each control panel shall be provided with a control power disconnect switch located and wired so as to disconnect all control power in the panel. The leaving side of this switch shall be wired to the panel and field components through a fuse or fuses sized and applied to protect both the components of the system as well as the wire and as required for code compliance.
- 11. Power to the following equipment will be have a fuse rated for applicable current and voltage. Fuses will be on rail terminal strips. Equipment includes:
 - a. Each control unit
 - b. Control devices
 - c. Panel light
 - d. Receptacle loads (e.g., modems, laptops)
- 12. All control panels containing electrical equipment shall be NEMA rated for the location in which they are installed. Cover mounted components, tubing penetration, and conduit penetrations shall be made in a manner consistent with the NEMA rating.

PERMIT SET 06.05.2018

- 13. All wiring leaving the panel shall be separated by classification; i.e., Class 1 circuits shall not be run with Class 2 circuits, etc. Segregation shall be maintained inside the panel to the fullest extent possible. Where low voltage wires carrying low level ac and dc signals cross wires containing power and high level ac signals, the wires shall cross at a 90° angle.
- E. Control panels shall be shop fabricated and tested prior to installation in the field. The panels shall be inspected and approved by the Engineer and Project Manager at the assembly location prior to installation in the field. The Engineer and Project Manager shall be given the opportunity to witness the testing of the panels.

F. Panel Location:

- 1. Each control panel is to be located for convenient servicing.
- 2. Mount panels adjacent to associated equipment on vibration isolation.

2.4 CONTROL VALVES AND ACTUATORS

- A. Control Valves and Actuators:
 - 1. Provide adequate size and number of modulating or two-position action.
 - 2. Provide positive positioning devices where shown or where sequencing cannot be accomplished by using standard spring ranges.
 - 3. Electronic actuators shall be manufactured by Belimo for all valves.
 - 4. Torque shall be rated at twice the required load.

B. Valve Sizing:

- 1. Modulating valve sizing shall be based on the following conditions.
 - a. Water Valves:
 - 1.) Minimum pressure drop-2 psi or equal to the water side pressure drop of the coil it is associated with, whichever is greater.
 - 2.) Maximum pressure drop-3 psi
 - b. Flow rates for valve sizing shall be based upon the flow rates indicated on the equipment schedules on the drawings.
 - c. Valve sizing shall consider the valve cavitation coefficient. In no case shall a valve be sized so that the pressure drop through the valve causes cavitation with fluid temperatures and pressures encountered in the system during start up or normal operation.
 - d. Valves on heating systems to be normally open.

C. Valves:

- 1. For Valves 2" and Smaller: Forged nickel plated brass body, stainless steel ball & stem. EPDM seat and stem o-ring. Teflon Seat & TEFZEL characterizing disk. Approved for fluid and temperature of operation.
- 2. For Valves 2 1/2" and Larger: Butterfly style, ASME/ANSI Class 150 minimum carbon steel body. Stainless steel shaft and dish, RIFE seat, TFE gland seal and glass backed PTFE bearings. Approved for fluid and temperature of operation.
- 3. Two position valves shall be the full size of the pipe that they are associated with unless otherwise specified.
- 4. Two-way valve actuators shall be sized to close off tight against the full pump shut off head on the system upon which they are installed.

PERMIT SET 06.05.2018

- 5. Three-way valve actuators shall be sized to close off tight in both directions against 2.5 times the valve pressure drop at full flow.
- 6. Valves shall close against differential pressures. Water control valves, acting as pressure control or pressure relief valves, shall be capable of closing against a differential pressure equal to 150% of rated pump head of each application.
- 7. Screwed ends on valves 2-inches and smaller. Flanged ends on valves 2 ½ "inches and larger.
- 8. Three-way valves where indicated on drawings, otherwise two-way valves.

2.5 CONTROL DAMPER ACTUATORS

- A. All damper actuators shall be Belimo electric actuators.
- B. Torque rating shall be based on the damper manufacturers operating torque requirements at the design flows and pressure drops or shall be based on the manufacturers required shut-off torque to achieve the design leakage rate, whichever is greater. This higher torque rating shall be doubled. An actuator with this doubled torque rating shall be installed.
- C. All damper sections which operate in sequence with each other shall have identical actuators and identical linkage arrangements to assure similar performance between all sections.
- D. Modulated actuator operation shall be industry standard 0-10v.
- E. Two or three position operation is not acceptable for economizers, VAV dampers, multi-zone dampers, or any other application specifying modulated operation. OSA Dampers to be normally closed, mixed air dampers to be normally open.
- F. Actuator quantities for dampers shall be based on the following criteria.
 - 1. Actuators must be outside unit enclosure.
 - 2. Actuators shall be installed to maximize the linearity between actuator stroke and actuated devise travel (25% actuator stroke produces approximately 25% of the desired angular rotation required; 50% stroke produces 50% angular rotation). In addition, actuators should be installed to maximize force available for useful work over the entire stroke.
- G. Actuators for VAV boxes to be provided to VAV manufacturer for installation at the factory.

2.6 SENSORS

- A. All sensing inputs shall be provided industry standard signals.
- B. Temperatures, humidities, differential pressure signals, and all other signal inputs shall be industry standard variable voltage or amperage.
- C. All signal inputs shall be compatible with the controllers used and with the requirement for readout of variables as specified.
- D. If sensors are not linear, then software will linearize sensor output.

- E. Controls and sensors for VAV boxes to be provided to VAV manufacturer for installation at the factory.
- F. Minimum sensor accuracy (as compared to a test standard) and range are listed in Table. Accuracy is not the same as resolution (the ability of the DDC to measure incremental change). Resolution is specified in "Part 3. DDC Hardware."
 - 1. All accuracy values should be combined effect numbers taking into account thermal drift, interchangeability, hysteresis, etc.

Sensor Type	Range	Min. Accuracy
Duct/Air Handling		
Unit Temperature	40 – 130°F	± 0.5 Degree F
Room Temperature	50 – 85°F	± 1 Degree F
Outside Air Temperature	- 20 to 120°F	± 0.5 Degree F
Chilled Water Temperature	32 – 80°F	± 0.1 to ± 0.5 Degree F
Hot Water Temperature	80 – 220°F	± 0.1 to ± 0.5 Degree F
Water flow	Sized for application	± 5% of reading
Humidity	0 to 100% RH	± 3% RH
Duct Static Pressure	0 to 3" w.c.	± 1% full scale per 50°F
Space Static Pressure	- 0.25" to 0.25" w.c.	± 1% full scale per 50°F
High Limit Static	0-5" w.c.	+ 1% full scale per 50°F
Steam Pressure	Sized for application	± 1% full scale
Current Sensor	Sized for application	± 1% full scale
Power (kWh)	Sized for application	± 2.5% full scale (at 0.5 PF)
	one of approvious	± 2% full scale (at 1.0 PF)
Air flow	700 to 4,000 fpm	± 2% full scale
CO ₂ sensors	0 to 2,000 PPM	± 3% full scale
Freeze Stat	34°F to 68°F	+ 1°F
Sensors shall not drift more than 1% of full scale per year		

2.7 TEMPERATURE SENSORS/THERMOSTATS

- A. All sensors shall be completely electronic.
- B. Immersion Type Temperature Sensor:
 - 1. The probe of the sensor shall be constructed of stainless steel and pressure rating consistent with system pressure and velocity.
 - 2. The well shall be constructed of stainless steel and sized to reach into the center of the pipe. Pipes with small diameters shall have the well mounted at a 90 degree elbow to allow sufficient contact with the fluid.
 - 3. Locate wells to sense continuous flow conditions.
 - 4. Do not install wells using extension couplings.
 - 5. Wells shall not restrict flow area to less than 70 percent of line-size-pipe normal flow area. Increase piping size as required to avoid restriction.
 - 6. Provide thermal transmission material within the well.
 - 7. Provide wells with sealing nuts to contain the thermal transmission material and allow for easy removal.

2.8 TRANSFORMERS

A. Transformers selected and sized for appropriate VA capacity and installed and fused according to applicable Codes.

2.9 CURRENT SWITCHES

- A. The status of all non–VFD fan and pump motors and all VFD fan and pump motors less than 20 HP shall ONLY be detected using current switches.
- B. The current switch shall be provided for electrical equipment status applications only.
- C. Switch should attach directly to the conductor and have a mounting bracket for installation flexibility.
- D. The current switch shall be 100% solid state electronics.
- E. The current switch shall be induce powered from the monitored load

2.10 CURRENT SENSORS/TRANSFORMERS

- A. The status and amperage of all VFD motors for fan and pumps greater than 20 HP shall be detected using current sensors ONLY.
- B. The Amp signal shall be provided on operator screen.
- C. The scale used must be selected in order to obtain normal operating readings at the mid-point of the scale.
- D. The scale used must be selected in order to detect changes in current flow resulting from motor belt or coupling loss, belt slippage, and other mechanical failures and should be able to distinguish low load conditions.

2.11 REFRIGERANT SENSOR

- A. Micro-processor controlled infrared technology device enclosed.
- B. Factory set for new chiller refrigerant. Confirm with chiller refrigerant prior to submittal.
- C. 5-1,000 ppm range with +/- 3% accuracy.
- D. Continuous scanning with 4-20mA output signal.
- E. Provide with sensor and two remote alarm and monitoring stations.
- F. Honeywell 301 EM-20 or equal.

2.12 SURGE PROTECTION

- A. All equipment shall be protected from power surges and voltage transients. If failure occurs from surges and transients during the warranty period, then the Contractor shall repair surge protection equipment and other equipment damaged by the failure at no cost to the owner.
- B. Isolation shall be provided at all peer-to-peer network terminations, as well as all field point terminations to suppress induced voltage transients, and shall be consistent with IEEE standards 587-1980.

2.13 FACTORY MOUNTED DEVICES

A. Sensors as required shall be provided by Control Contractor to the manufacturer for installation. All materials and labor beyond this is the responsibility of the Control Contractor.

2.14 LABELING AND IDENTIFICATION

- A. All devices relating to the work or systems included herein, including controllers, valves, motors, relays, etc., shall be identified with a unique identification number or name on the submitted engineering drawings. This identification number or name, along with the service of the device (discharge air controller, mixed air controller, etc.), shall be permanently affixed to the respective device.
- B. All field devices will be supplied with a nameplate indicating its name, number, address, and all other pertinent information.
- C. If the field device is too small for the nameplate to be "adhered" to or on another piece of equipment near it (e.g., nameplate on air handling unit at wire penetration for mixed air temperature sensor), then attach the nameplate via nylon ties.
- D. Tagging shall be computer generated. For input/output wiring, cabling, or tubing, the panel side of the terminals shall be labeled with the automation panel circuit board and terminal numbers associated with the point. The field side shall be labeled with the point number. Cable, wiring and tubing not specifically associated with an input or output shall be labeled with a number and function.
- E. All wiring, tubing, and cabling both inside and outside of control panels shall be labeled at both ends using Thomas and Betts EDP printable wire and cable markers using style WSL self-laminating vinyl. Input and output cables and wiring shall be labeled with the point number and the point description, such as:

CPDPS005 Primary Heating Water Pump #1 On/Off Status

F. Cable and wiring not specifically associated with an input or output shall be labeled with a number and a function description such as:

120 VAC Panel #

G. Label the 24V transformer locations with the feeding panel and circuit number.

PART 3 - DIRECT DIGITAL CONTROLS - HARDWARE

3.1 PRIMARY CONTROL UNITS FOR NEW EQUIPMENT ONLY IF REQUIRED

A. Primary control units are stand-alone units able to control HVAC equipment per the specified sequence of operation.

PERMIT SET 06.05.2018

- 1. Each controller shall be capable of performing all specified control functions independently. The primary control unit shall directly control all units, fans, and control devices. All control software shall be implemented in the primary control unit. The sequence of operation precisely identifies all points of monitoring and control.
- 2. Shall monitor specific analog and digital inputs, process the data received, and produce analog or digital outputs to control the systems specified.
- 3. Systems utilizing controllers that operate in a default mode only as a stand-alone will not be acceptable.
- 4. The controller platform shall provide options and advanced system functions, programmable and configurable using Niagara AX FrameworkTM, that allow standard and customizable control solutions required in executing the "Sequence of Operation".

B. Minimum specifications include:

- 1. Microprocessor-based controllers, fully equipped with power supply, input and output terminals, internal (electronic) timeclock, and self-charging battery backup.
- 2. Modular multi-tasking microprocessor based direct digital controller with minimum of 1MB of EEPROM and RAM memory.
- 3. Minimum 10 bit Analog-to-Digital (A/D) converter.
- 4. Minimum 12 bit Digital-to-Analog (D/A) converter.
- 5. Sufficient memory for storing 288 trend values for every point (real and virtual).
- 6. Controllers shall have unused physical points available for future add-ons. The number of spare points shall equal 20% of all physical points (20% AI, 20% AO, 20% BI, 20% BO) or at least two spare points of each type.
- 7. Shall include all control strategies listed in "Part 4: DDC Software."
- 8. Each control loop shall be fully definable in terms of inputs and outputs that are a part of the control strategy.
- 9. Each control unit shall be equipped with a communication interface connection, minimum of 16 universal analog or digital inputs and outputs, and shall communicate via the LAN to the building level controller.
- 10. On board power supply for all sensors.
- 11. On board sockets for plug-in resistors.
- 12. Each control units shall be capable of proper operation in an ambient environment of between 32°F and 110°F and from 10% to 90% RH.
- 13. Control units provided for outside installation shall be capable of proper operation in an ambient environment of 0°F to 120°F, and 5 to 95% RH. If such hardware is not available, locate hardware in an accessible indoor location or as approved by the Engineer or Project Manager.
- 14. Power Failure Protection:
 - a. All control panels shall be provided with automatic protection from power failure for at least 168 hours.
 - b. This protection shall, at a minimum, include continuous real-time clock operation, automatic system restart upon power return, and integrity of all volatile point data.
 - c. Panel outputs shall, at a minimum, be configured to remain in the last commanded state and return to the required state upon restoration of power.

PERMIT SET 06.05.2018

- 15. Diagnostics: Controller shall continuously perform self-diagnostics, communication diagnosis, and diagnosis of all panel components. The network controller shall provide both local and remote annunciation of any detected component failures, low battery conditions, or repeated failures to establish communication.
- 16. Power Failure: In the event of the loss of normal power, there shall be an orderly shutdown of all controllers to prevent the loss of database or operating system software. Nonvolatile memory shall be incorporated for all critical controller configuration data, and battery backup shall be provided to support the real-time clock and all volatile memory for a minimum of 72 hours.
 - a. During a loss of normal power, the control sequences shall go to the normal system shutdown conditions.
 - b. Upon restoration of normal power and after a minimum off-time delay, the controller shall automatically resume full operation without manual intervention through a normal soft-start sequence.
 - c. Should a controller memory be lost for any reason, the operator workstation shall automatically reload the program without any intervention by the system operators.
- 17. Certification: All controllers shall be listed by Underwriters Laboratories (UL).
 - a. All controllers shall be listed by Underwriters Laboratories (UL).
 - b. NiCS (Compatibility Statement) shall show no restrictions to conductivity. Provide devices with station compatibility in and out and tool compatibility in and out. Having a value of "all" for each.

3.2 SECONDARY CONTROL UNITS FOR NEW EQUIPMENT IF REQUIRED

- A. Secondary control units are able to control HVAC equipment per specified by the sequence of operation.
 - 1. Each controller shall be capable of performing specified control functions. The secondary control unit shall directly control all units, fans, dampers and control devices. All control software shall be implemented in the secondary control unit. The sequence of operation precisely identifies all points of monitoring and control.
 - 2. Each controller shall monitor specific analog and digital inputs, process the data received, and produce analog or digital outputs to control the systems specified.
 - 3. The controller platform shall provide options and advanced system functions, programmable and configurable using Niagara AX FrameworkTM, that allow standard and customizable control solutions required in executing the "Sequence of Operation".
- B. Minimum specifications include:
 - 1. Microprocessor-based controllers, fully equipped with power supply, input and output terminals.
 - 2. Modular multi-tasking based direct digital controller with minimum of 2048 bytes of EEPROM and RAM memory.
 - 3. Minimum 8 bit Analog-to-Digital (A/D) converter.
 - 4. Minimum 10 bit Digital-to-Analog (D/A) converter.
 - 5. Controllers shall have unused physical points available for future add-ons. The number of spare points shall equal 20% (20% AI, 20% AO, 20% BI, 20% BO) of all physical points or two spare points whichever is greater.
 - 6. Shall include all control strategies listed in "Part 4: DDC Software."

PERMIT SET 06.05.2018

- 7. Each control loop shall be fully definable in terms of inputs and outputs that are a part of the control strategy.
- 8. Each secondary control unit shall be equipped with a USB communication interface connection, minimum of 16 universal analog or digital inputs or outputs, and shall communicate via the LAN to the network front end. Each control units shall be capable of proper operation in an ambient environment of between 32°F and 110°F and from 10% to 90% RH.
- 9. Control units provided for outside installation shall be capable of proper operation in an ambient environment of 0°F to 120°F, and 5 to 95% RH. If such hardware is not available, locate hardware in an accessible indoor location, in a ventilated control panel or as approved by the Project Manager or Engineer.

PART 4 - DIRECT DIGITAL CONTROLS – SOFTWARE

4.1 SYSTEM SOFTWARE

- A. Update software to latest version that operates with all existing and new controllers.
- B. No other changes to software, passwords, graphics, alarms, or trends required except for new equipment.

PART 5 - NOT USED

PART 6 - SYSTEM COMMISSIONING AND TRAINING

Air and water balancing shall be completed (and discrepancies resolved) before Control Contractor's final system check and before the acceptance test to be conducted in the presence of the Engineer or Project manager.

6.1 CONTROL TECHNICIAN MEETING REQUIREMENTS

- A. During all pre-installation meetings with Owner / Engineer and separate meetings pertaining to the commissioning process, the control technician attending the meetings must be the same technicians that are/will install and program the DDC system.
- B. The Control Contractor's installer and programmer must attend all the commissioning meetings. These meetings occur throughout the design and construction process.
- C. First Meeting discuss point naming and sequence of operation with Engineer and Owner.
 - 1. Prior to software and database installation and checkout but subsequent to software and database development, the Control Contractor shall meet with the Owner and the Engineer and review the database and program code in detail on a point by point, sequence by sequence basis. The Control Contractor (using blueprints and this specification) shall provide the project point list and sequence of operation to initiate discussion.

PERMIT SET 06.05.2018

- 2. Any necessary modifications required to make the database and sequence match the intent and requirements of the Contract documents shall be identified at this meeting including point names, descriptors, alarm setpoint, numeric setpoint requirements, access requirements, sequence adjustments, etc.
- 3. Successful completion of this review process will result in software and database approval for installation and start-up. Any software or database that is installed prior to this approval process shall be corrected to match the results of the approval process at no additional cost to the Owner.
- 4. The results of this meeting shall be documented in meeting minutes taken and issued by the Control Contractor. Documentation can be in the form of marked up data base forms and sequences of operation.
- D. Second Meeting graphic screen development shall be coordinated with the Owner through a series of meetings that will allow the functions described above (sequence of operation, alarms, etc.) and any other Owner's requirements to be incorporated into the graphic screens.

6.2 PRE-COMMISSIONING TESTING, ADJUSTING, AND CALIBRATION REQUIREMENTS

- A. Prior to acceptance, the following steps will be used by the Control Contractor to produce a testing and pre-commissioning report by system to be submitted for approval by the Engineer or Owner.
- B. Work and/or systems installed under this section shall be fully functioning prior to Demonstration, Acceptance Period and Contract Close Out. Control Contractor shall start, test, adjust, and calibrate all work and/or systems under this Contract, as described below:
 - 1. Verify proper electrical voltages and amperages, and verify all circuits are free from grounds or faults.
 - 2. Verify integrity/safety of all electrical connections.
 - 3. Verify proper interface with fire alarm system.
 - 4. Coordinate with TAB sub-Contractor to obtain control settings that are determined from balancing procedures. Record the following control settings as obtained from TAB Contractor (and note any TAB deficiencies):
 - a. Minimum outside air damper settings for air handling units and CFM values.
 - 5. Test, calibrate, and set all digital and analog sensing, and actuating devices.
 - a. Calibrate each instrumentation device by making a comparison between the DDC display and the reading at the device, using a standard traceable to the National Bureau of Standards, which shall be at least twice as accurate as the device to be calibrated (e.g., if field device is +/-0.5% accurate, test equipment shall be +/-0.25% accurate over same range). Record the measured value and displayed value for each device in the Pre-Commissioning Report.
 - b. All analog input points are to be tested by comparing the reading obtained through the workstation and through an independent reading device (meter).

PERMIT SET 06.05.2018

- c. Check each analogue output by making a comparison between the control command at the DDC controller and the status of the controlled device. Check each output point by making a comparison of the state of the sensing device and the Host computer display. Record the results for each device in the Pre-Commissioning Report.
 - 1) All analog output points are to be tested using a command from the workstation modulating the output in 10% increments and recording the associated voltage/amps sent to the controlled device.
- 6. Check each digital input/output point by making a comparison between the control command at the DDC controller and the status of the controlled device. Check each digital point by making a comparison of the state of the sensing/control device and the Host computer display. Record the results for each device in the Pre-Commissioning Report.
 - a. ON/OFF commands from the workstation should be performed in order to verify its true operation.
- 7. Check and set zero and span adjustments for all actuating devices.

 Manually activate damper and valve operators to verify free travel and fail condition. Check valve or damper to insure that it shuts off tight when the appropriate signal is applied to the operator. Adjust the operator spring compression as required. If positioner or volume booster is installed on the operator, calibrate per manufacturer's procedure to achieve spring range indicated. Check split range positioner to verify proper operation. Record settings for each device in the Pre-Commissioning Report.
- 8. Verify proper sequences of operation. Record results and submit with Pre-Commissioning Report. Verify proper sequence and operation of all specified functions by adjusting input variable to determine if sequence of operation is operating as specified.
- 9. Tune all control loops to obtain the fastest stable response without hunting, offset or overshoot. Record tuning parameters and response test results for each control loop in the Pre-Commissioning Report. Except from a startup, maximum allowable variance from set point for controlled variables shall be as follows:

a. Air temperature: ± 0.5 degrees F
 b. Water temperature: ± 1 degrees F

c. Duct pressure: ± 0.05 inches wc

- C. Pre-Commissioning Testing, Adjusting, and Calibration shall be completed prior to Substantial Completion.
- D. Provide Pre-Commissioning Test Report for approval by the Engineer and Owner before system demonstration.

6.3 DEMONSTRATION

A. Prior to acceptance, the control system shall undergo a series of performance tests to verify operation and compliance with this specification. These tests shall occur after the Control Contractor has completed the installation, started up the system, and performed its own tests (outlined in 6.01 and to be submitted in writing).

PERMIT SET 06.05.2018

- B. The tests described in this section are to be performed in addition to the tests that the Control Contractor performs as a necessary part of the installation, startup, and debugging process. The Engineer will be present to observe and review these tests. The Engineer shall be notified at least 10 days in advance of the start of the testing procedures.
- C. Demonstration shall not be scheduled until all hardware and software submittals, and the Pre-Commissioning Test Report are approved by the Engineer.
- D. Verifying compliance of equipment operation and sequence of operation with this specification through all modes of operation.
 - 1. If more than 10 percent of the demonstrated equipment operation and sequence of operation fails to operate per the submittals, the demonstration test will be rescheduled after the control Contractor takes corrective action.
 - 2. If the Control Contractor fails to demonstrate proper equipment operation and sequence of operation in the second round of tests, the Engineer's costs for witnessing all further demonstration may be assigned to the Control Contractor by the Owner as a deduct to their contracted price. Note: The Control Contractor will not be responsible for costs related to poor design or to other factors beyond their control, though it is expected to call any design concerns and other factors beyond their control that might cause system failure to the attention of the Engineer and the Owner.
- E. Programming changes for correction of improperly programmed sequences will not be considered legitimate reasons for change orders.
- F. Demonstration/Commissioning Software:
 - 1. Provide fully licensed copy of the required BAS workstation graphic software to be used by the Engineer on a remote computer (not included in Contract) for accessing the BAS network via modem. This software copy shall be used only for the purpose of commissioning this project. The Owner agrees that the commissioning BAS software license shall become null and void upon termination of the Contract Warranty Period. The software shall be returned to the Control Contractor within one year after system acceptance.
 - 2. Software shall be fully configured to view project specific database and shall include trend logs, specified graphic screens, alarms, and reports.
 - 3. Provide assistance by telephone upon request if required to assist Engineer in setting up software on Engineer's remote computer.
 - 4. Submit one complete set of programming and operating manuals for all graphics software packages concurrently with the commissioning software. This set will be returned to the Control Contractor within one year after system acceptance.
- G. The Control Contractor shall provide at least two persons equipped with two-way communication, and shall demonstrate actual field operation of each controlled and sensing point for all modes of operation including day, night, occupied, unoccupied, fire/smoke alarm, seasonal changeover, and power failure modes. The purpose is to demonstrate the calibration, response, and action of every point and system. Any test equipment required to prove the proper operation shall be provided by and operated by the Control Contractor.

PERMIT SET 06.05.2018

- H. As each control input and output is checked, a log shall be completed showing the date, technician's and Engineer's initials, and any corrective action taken or needed.
- I. The system shall be demonstrated following the same procedures used in Pre-Commissioning (Section 6.01)
- J. Demonstrate that all points specified and shown can be interrogated and/or commanded (as applicable) from all workstations.
- K. At a minimum, demonstrate correct calibration of input/output devices using the same methods specified for the pre-commissioning tests. A maximum of [10] percent of I/O points shall be selected at random by Engineer for demonstration. Upon failure of any device to meet the specified accuracy, an additional [10] percent of I/O points shall be selected at random by Engineer for demonstration. This process shall be repeated until 100 percent of randomly selected I/O points have been demonstrated to meet specified accuracy.
- L. The Contractor shall demonstrate that the panels' response to LAN communication failures meet the requirements of these Specifications.
- M. Demonstrate that required trend graphs and trend logs are set up per the requirements. Provide a sample of the data archive. Indicate the file names and locations.
- N. Demonstrate successful communication of point values between the BAS and other HVAC equipment (e.g., chiller).
- O. Demonstrate complete operation of Operator Interface such as graphic screens, trend logs, alarms, etc.
- P. Additionally, the following items shall be demonstrated:
 - 1. DDC Loop Response. The Control Contractor shall supply trend data output in a graphical form showing the step response of each DDC loop. The test shall show the loop's response to a change in set point that represents a change of actuator position of at least 25% of its full range. The sampling rate of the trend shall be from 1 second to 3 minutes, depending on the speed of the loop. The trend data shall show for each sample the set point, actuator position, and controlled variable values (e.g., VFD frequency or Amperage). Any loop that yields unreasonably underdamped or over-damped control shall require further tuning by the Control Contractor.
 - 2. Optimum Start/Stop. The Control Contractor shall supply a trend data output showing the capability of the algorithm. The 5 minute trends shall include the operating status of all optimally started and stopped equipment, as well as temperature sensor inputs of affected areas.
 - 3. Operational logs for each system that indicate all set points, operating points, valve positions, mode, and equipment status shall be submitted to the Engineer. These logs shall cover three 48-hour periods and have a sample frequency of not more than 10 minutes. The logs shall be provided in both printed and disk formats.

PERMIT SET 06.05.2018

- 4. The DDC and HVAC systems will be shut down for 15 minutes and then re-started. Within 15 minutes, the DDC system shall start and obtain stable control of the HVAC systems without safety trips, alarms, or excessive deviations in temperature and pressure (as defined by the Engineer).
- Q. System acceptance shall occur within 120 days of substantial completion. Any delay beyond this period of time shall initiate liquidated dampers unless waived by Owner. Failure or delays on Engineers / Owners part shall not be included in 120 day count.

6.4 ACCEPTANCE

- A. All tests described in this specification shall have been performed to the satisfaction of both the Engineer and Owner prior to the acceptance of the control system as meeting the requirements of this document.
- B. The system shall not be accepted until all forms and checklists completed as part of the demonstration are submitted and approved.
- C. The warranty period starts when the Owner accepts the system and provides this acceptance in written form to the Owner and the Control Contractor.
- D. Any tests that cannot be performed due to circumstances beyond the control of the Control Contractor may be exempt from the Completion requirements if stated as such in writing by the Engineer. The Owner shall then perform such tests no later than 3 months after the building is occupied. The costs for these additional tests will be incurred by the Control Contractor.
- E. Allow one day up to six months after acceptance for opposite season test and verification with Engineer.

6.5 SPARE PARTS

- A. The Control Contractor shall provide two spare fuses of the correct size and capacity for each fuseholder located in all the installed control systems and the Control Contractor's related equipment.
- B. The Control Contractor shall provide two spare pilot lights for each control unit that contains one or more pilot lights.

6.6 TRAINING

A. Provide one 4-hour on-site training sessions after system acceptance and at the Owner's request. Show Owner changes to the system.

END OF SECTION