O'Neill Walsh Community Builders

Submittal Form

ARCHITECT

OWCB
AHSC
(Project)
Submittal No. 001
Description: Common Plumbing Materials
Date: 6/5/17 Return By: 6/14/17
Division: 22
Section: 22 05 00

Andersen Subcontract/Supplier:

The review by O'Neill Walsh Community Builders ("OWCB") of the above Submittal shall not relieve Subcontractor/Supplier from any of its obligations under the agreement with OWCB nor give rise to any claim in favor of the Subcontractor/Supplier or third parties against OWCB or Owner.

	Logan Bright			
O'Neill Walsh Community Builders				
Notes:				

Logon Bright

Bv:

Nata.			
Notes:			

ENGINEER

No Exception taken.

Checking is only for general conformance with the design concept of the project and general compliance with the information given in the contractdocuments. Any action shown is subject to the requirements of the plans and specfications. Contractor is responsible for: Dimensions, which shall be confirmed and correlated at the job site; fabrication processes and techniques of construction; coordination of his work with that of all other trades; and the satisfactory performance of his work.

MFIA, Inc. Consulting Engineers

By: Takako Baker, Date: 6/9/17

Ν	ot	es	

See submittal review letter.

"Your Green Heating & Cooling Professionals Dedicated to Serving Your and Your Community"

Plumbing Submittals

Asian Health & Service Center 9005 SE Foster Rd. Portland, OR 97266

General Contractor
O'Neill / Walsh Community Builders
2905 SW First Avenue
Portland, OR 97201

Submitted By Andersen Mechanical 16285 SW 85th Ave, Suite 410 Tigard, OR 97224

"Your Green Heating & Cooling Professionals Dedicated to Serving Your and Your Community"

Plumbing Submittal Index

22_05_00	Common Materials and Methods
22_07_00	Plumbing Insulation
22_10_00	Plumbing Piping and Pumps
22 30 00	Plumbing Equipment
22_40_00	Plumbing Fixtures

22_05_00

Common Materials and Methods

ACCESS DOORS

Dry Wall Access Doors

Doors are ideally suited for new installations or for remodeling in masonry, tile, wood or other wall and ceiling surfaces. Door features rounded safety corners.

Door and Frame are fabricated from 16 gage, galvannealed steel with a white prime coat finish.

Frame is one piece construction, 1" wide and provides perfect concealment of the rough wall opening. Wall frame is provided with 1/4" mounting holes for fastening within the furred spaces allowing faster installation and fixing maximum clearance.

Concealed Pivoting Rod Hinge prevents distortion and closes door squarely. Doors 24" or larger are provided with a continuous piano hinge.

Latch is screwdriver operated.

Finish is a white prime coat suitable for painting.

Guide Specification

Provide Elmdor® DW Series, Dry Wall Access Doors (Specify model number and options.) Access door and frame shall be fabricated from 16 gage, galvannealed steel with a white prime coat finish. The door shall have rounded safety corners and a concealed pivoting rod hinge. Frame shall be one piece construction with no miters or welds on the face. Latch shall be screwdriver operated. Finish shall be a white prime coat suitable for painting.

MODEL NUMBER AND OPTIONS SELECTION

BASE MODEL NUMBER

Dry Wall Access Door (16 Gage Steel)

Suffix Options

☐ - AKL Allen Key Latch

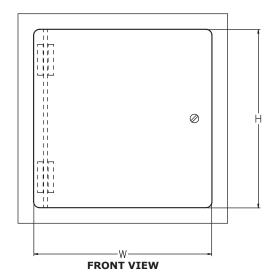
☐ - CL Cylinder Lock (one per door)

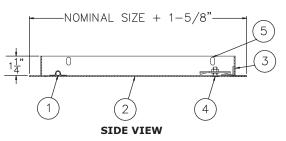
□ - CLD Cylinder Lock with Dust Shutter

(one per door)

- MAS Masonry Anchor Straps

□ - MLP Mortise Cylinder Lock (Prep)□ - SS Stainless Steel Construction


(Type 304 No. 4 Satin Finish)


☐ - TH 'T' Handle

STANDARD AVAILABLE SIZES

Special sizes available upon request.

NOMINAL			
DOOR SIZE			
(WXH)	WALL OPENING	LATCHES	WEIGHT
DW 6" x 6"	6-1/2" x 6-1/2"	1	3 lbs.
DW 8" x 8"	8-1/2" x 8-1/2"	1	3 lbs.
DW 8" x 12"	8-1/2" x 12-1/2"	1	4 lbs.
DW 10" x 10"	10-1/2" x 10-1/2"	1	4 lbs.
DW 12" x 12"	12-1/2" x 12-1/2"	1	5.5 lbs.
DW 12" x 16"	12-1/2" x 16-1/2"	1	6 lbs.
DW 12" x 18"	12-1/2" x 18-1/2"	2	6.5 lbs.
DW 12" x 24"	12-1/2" x 24-1/2"	2	9.5 lbs.
DW 14" x 14"	14-1/2" x 14-1/2"	1	6 lbs.
DW 14" x 20"	14-1/2" x 20-1/2"	2	8 lbs.
DW 14" x 24"	14-1/2" x 24-1/2"	2	15 lbs.
DW 15" x 15"	15-1/2" x 15-1/2"	1	6.5 lbs.
DW 16" x 16"	16-1/2" x 16-1/2"	1	7.5 lbs.
DW 16" x 20"	16-1/2" x 20-1/2"	2	8.5 lbs.
DW 16" x 24"	16-1/2" x 24-1/2"	2	10 lbs.
DW 18" x 18"	18-1/2" x 18-1/2"	3	9 lbs.
DW 18" x 24"	18-1/2" x 24-1/2"	5	12 lbs.
DW 18" x 36"	18-1/2" x 36-1/2"	3	16 lbs.
DW 20" x 20"	20-1/2" x 20-1/2"	3	11 lbs.
DW 20" x 24"	20-1/2" x 24-1/2"	3	13 lbs.
DW 20" x 30"	20-1/2" x 30-1/2"	5	15 lbs.
DW 22" x 22"	22-1/2" x 22-1/2"	3	12 lbs.
DW 22" x 30"	22-1/2" x 30-1/2"	3	16 lbs.
DW 24" x 24"	24-1/2" x 24-1/2"	3	15 lbs.
DW 24" x 30"	24-1/2" x 30-1/2"	6	17 lbs.
DW 24" x 36"	24-1/2" x 36-1/2"	5	20.5 lbs.
DW 24" x 48"	24-1/2" x 48-1/2"	7	28 lbs.
DW 30" x 30"	30-1/2" x 30-1/2"	7	21.5 lbs.
DW 30" X 36"	30-1/2" X 36-1/2"	7	29 lbs.
DW 32" x 32"	32-1/2" x 32-1/2"	7	23 lbs.
DW 36" x 36"	36-1/2" x 36-1/2"	8	31.5 lbs.
DW 36" x 48"	36-1/2" x 48-1/2"	9	42 lbs.
DW 48" x 48"	48-1/2" x 48-1/2"	11	58 lbs.

NOTES:

- 1. CONCEALED PIVOTING ROD HINGE
- 2. DOOR
- 3. FRAME
- 4. SCREWDRIVER OPERATED LATCH
- 5. MOUNTING HOLES

Dimensions are subject to manufacturer's tolerance of plus or minus 1/4". Elmdor/Stoneman assumes no responsibility for use of void or suspended data. Please visit **www.elmdorstoneman.com** for most current specifications. © Copyright 2009 Elmdor/Stoneman, City of Industry, CA, A Division of Acorn Engineering Company.

SELECTION SUMMARY & APPROVAL FOR MANUFACTURING				
Model Number & Options	Quantity			
Company	Date			
Contact	Title			
Approval for Manufacturing/Signature				

DW Revised: 12/06/16

ACCESS DOORS

CFR Series

Ceiling Fire Resistant Access Doors

Doors are designed for use in a suspended dry wall ceiling as part of a fire rated ceiling assembly. The CFR Series door, itself, **is not fire rated.** However, the combination of steel and fire rated tile maintains the fire resistant quality of the ceiling assembly. Door is recessed 1-1/2" to accommodate dual layered ceiling tile.

Door is fabricated from 16 gage, galvannealed steel with a white prime coat finish.

Frame is fabricated from 18 gage, galvannealed steel with a white prime coat finish.

Hinge is a continuous piano type.

Latch is screwdriver operated.

Guide Specification

Provide Elmdor® CFR Series, ceiling fire resistant access doors (specify model number and options). Access door frame shall be fabricated from 16 gage steel. Access door panel shall be fabricated from 18 gage steel. Door shall be recessed 1-1/2" to accept ceiling tile. Hinge shall be continuous piano type. Latch shall be screwdriver operated.

MODEL NUMBER AND OPTIONS SELECTION

BASE MODEL NUMBER

☐ CFR Ceiling Fire Resistant Access Door

Suffix Options

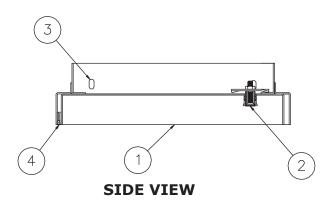
☐ -AKL Allen Key Latch

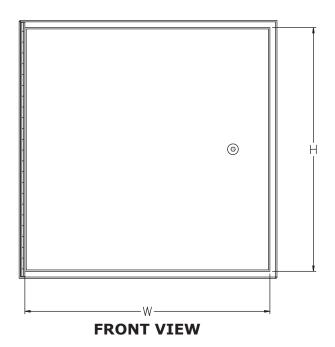
□ -CL□ -CLDCylinder Lock (one per door)Cylinder Lock with Dust Shutter

(one per door)

Stainless Steel Construction

(Type 304 No. 4 Satin Finish)


STANDARD AVAILABLE SIZES


Special sizes available upon request.

NOMINAL DOOR SIZE (W X H)	CEILING OPENING	LATCHES	WEIGHT
CFR 12" x 12"	10-1/2" x 10-1/2"	1	7.3 lbs.
CFR 18" x 18"	16-1/2" x 16-1/2"	2	12.5 lbs.
CFR 24" x 24"	22-1/2" x 22-1/2"	2	21.8 lbs.
CFR 22" x 30"	20-1/2" x 28-1/2"	4	26.0 lbs.

NOTES:

- 1. DOOR
- 2. SCREWDRIVER OPERATED LATCH
- 3. MOUNTING HOLES
- 4. CONCEALED HINGE

Dimensions are subject to manufacturer's tolerance of plus or minus 1/4". Elmdor/Stoneman assumes no responsibility for use of void or suspended data. Please visit **www.elmdorstoneman.com** for most current specifications. © Copyright 2009 Elmdor/Stoneman, City of Industry, CA, A Division of Acorn Engineering Company.

SELECTION SUMMARY & APPROVAL FOR MANUFACTURING				
Model Number & Options		Quantity		
Company		Date		
Contact	Title			
Approval for Manufacturing/Signature_				

CFR *Revised:* 10/25/16

ACCESS DOORS

Fire Rated Wall Access Doors

Doors are Fire Rated by Underwriters Laboratories Inc., for 1-1/2 hours, "B" Label, ANSI-UL 10B standard, and CAN/ULC S104 for 2 hours in walls. Door has a heavy duty spring closer to assure positive latching when panel closes. **This door is for wall installation only.**

Door and Frame are fabricated from 16 gage, galvannealed steel with a white prime coat finish.

Door has a heavy duty spring to assure positive latching.

Frame is equipped with both masonry anchors and bolt holes to facilitate installation in all types of wall construction.

Concealed Hinge operates completely out of sight so that only the door and frame is visible.

Exterior Latch is recessed and is operated using a ring attached to the sliding bolt.

Interior Latch Release Slide is included enabling door to be opened from the inside.

Finish is a white prime coat suitable for painting.

Guide Specification

Provide Elmdor® FR Series, Fire Rated Access Doors (specify model number and options). Access door and frame shall be fabricated from 16 gage, galvannealed steel with a white prime coat finish. Hinge shall be concealed type. Door shall have a heavy duty spring to provide positive latching when closed and an interior latch release slide enabling door to be opened from the inside. Exterior latch shall be recessed and operated using ring attached to the sliding bolt. Finish shall be a white prime coat suitable for painting.

MODEL NUMBER AND OPTIONS SELECTION

BASE MODEL NUMBER

☐ FR Fire Rated Access Door

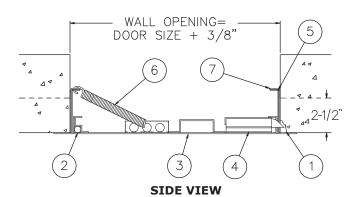
Suffix Options

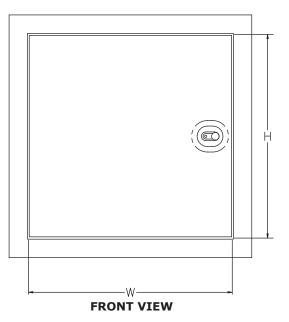
Cylinder Lock (one per door) -CL -CLD Cylinder Lock with Dust Shutter

(one per door)

Stainless Steel Construction ☐-SS

(Type 304 No. 4 Satin Finish)

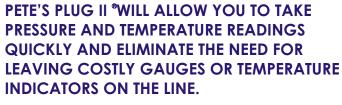

STANDARD AVAILABLE SIZES

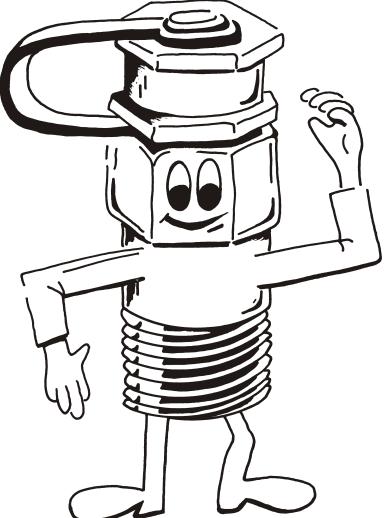

Special sizes available upon request.

Special sizes available upon request.					
NOMINAL DOOR SIZE (W X H)	WALL OPENING (minimum required)	LATCHES	WEIGHT		
FR 8" x 8"	8-3/8" x 8-3/8"	1	6 lbs.		
FR 10" x 10"	10-3/8" x 10-3/8"	1	7.5 lbs.		
FR 12" x 12"	12-3/8" x 12-3/8"	1	9 lbs.		
FR 12" x 18"	12-3/8" x 18-3/8"	1	10.5 lbs.		
FR 12" x 24"	12-3/8" x 24-3/8"	1	13 lbs.		
FR 14" x 14"	14-3/8" x 14-3/8"	1	10 lbs.		
FR 16" x 16"	16-3/8" x 16-3/8"	1	12.5 lbs.		
FR 18" x 18"	18-3/8" x 18-3/8"	1	15 lbs.		
FR 20" x 20"	20-3/8" x 20-3/8"	1	18 lbs.		
FR 22" x 22"	22-3/8" x 22-3/8"	1	22 lbs.		
FR 22" x 30"	22-3/8" x 30-3/8"	2	28 lbs.		
FR 24" x 24"	24-3/8" x 24-3/8"	2	24.5 lbs.		
FR 24" x 36"	24-3/8"x 36-3/8"	2	33 lbs.		
FR 24" x 48"	24-3/8" x 48-3/8"	2	42 lbs.		
FR 30" x 30"	30-3/8" x 30-3/8"	2	33.5 lbs.		
FR 32" x 32"	32-3/8" x 32-3/8"	2	35 lbs.		
FR 36" x 36"	36-3/8" x 36-3/8"	2	43 lbs.		
FR 36" x 48"	36-3/8" x 48-3/8"	2	74 lbs.		

NOTES:

- 1. CHIP OUT MASONRY TO CLEAR BOLT COVER
- 2. CONCEALED HINGE
- 3. DOOR
- 4. RECESSED LATCH
- 5. INTERIOR LATCH RELEASE SLIDE 6. CLOSING SPRING
- 7. FRAME


Dimensions are subject to manufacturer's tolerance of plus or minus 1/4". Elmdor/Stoneman assumes no responsibility for use of void or suspended data. Please visit www.elmdorstoneman.com for most current specifications. © Copyright 2009 Elmdor/Stoneman, City of Industry, CA, A Division of Acorn Engineering Company.


SELECTION SUMMARY & APPROVAL FOR MANUFACTURING				
Model Number & Options	_Quantity			
Company	Date			
Contact	Title			
Approval for Manufacturing/Signature				

FR Revised: 10/25/16

PETE'S PLUGII


The successor to the real Pete's Plug

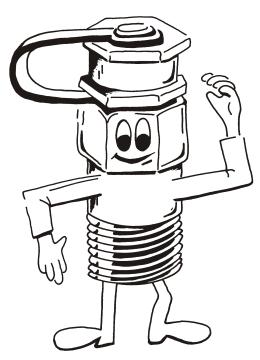
Depending on the application, the Pete's Plug can be operated to a maximum of 500 PSIG and 200° or 275°F for neoprene and nordel respectively. Maximum working pressures of 1000 PSIG can be attained with neoprene or nordel at temperatures from 140°F to -20°F.

The enhanced version of Pete's Plug II * is still the only pressure and temperature test plug with two self-closing valves, but the valves are improved with interaction which speeds valve closure.

Patent Number 5,079,962

Distributed in Your Area By:

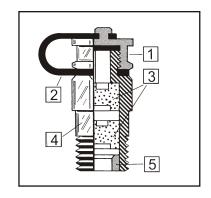
1-800-955-4GAS Phone: (215)946-2200 Fax: (215) 943-2984


Email: sales@imacsystems.com

Pete's Plug II is available in various pipe thread sizes, lengths and materials to satisfy each application. The XL Pete's Plug II will allow you to insulate the test point and not completely cover the Pete's Plug II. The XL Pete's Plug II eliminates extra fittings for insulated applications.

Pressure or Temperature Tests

Take pressure and temperature readings quickly with line pressurized. Reduce the need for costly permanent installation of gauges and recorders on the line.



How to operate

The Pete's Plug II is permanently installed in the line at recommended test points. The cap protects the valve and provides an additional seal. After the cap has been removed, either a test thermometer or a gauge adapter with the proper pressure gauge can be inserted through the two, self-closing valves in the Pete's Plug II. Readings are made, adjustments or tests can be accomplished and when the probes are withdrawn the two valves close. The protective cap is then reinstalled. Tests should be made as quickly as possible since the valve reseal time is dependent upon time of insertion, time and pressure. Slower valve reseal time can be expected at lower temperature and lower pressures.

Standard length Pete's Plug II Cross Section:

- 1. Cap and Gasket
- 2. Cap retaining strap
- 3. Two self closing valves with interaction to speed valve closure
- 4. Valve body
- 5. Valve retainer

Suggested specifications

Pressure and temperature test stations:

Supply and install where indicated "Pete's Plug II" a 1/4" fitting to receive either a temperature or pressure probe 1/8" OD. Fitting shall be solid brass with two valve cores of Neoprene (Max 200°F) at 500 PSI, or Nordel (Max 275°F) at 500 PSI, fitted with a color coded cap strap with gasket, and shall be rated at 1000 PSI at 140°F. In addition, the installing contractor shall supply the owner with ___ (number) pressure gauge adapters with 1/8" OD probe and ___ (number) five inch stem pocket testing thermometers; 25-125°F for chilled water and ___ (number) 0-220°F or ___ (number) 50-500°F for hot water.

Pressure and temperature test kit:

Supply and present to the owner upon completion of testing a pressure and temperature test kit. It will consist of a 0-100 PSI, 0-230 ft. of water pressure gauge with a Number 500 gauge adapter attached. It will contain one 25-125°F and one 0-220°F pocket testing thermometer, an extra number 500 gauge adapter, and a protective carrying case.

#1500XL test kit works with our extended length Pete's Plugs

Applications

In general the Pete's Plug is a time and money saving device which is well suited for most plant and pipeline systems and is designed to eliminate gauge cocks and thermometer wells. Hot and chilled water systems, heat exchangers, pumps, differential readings, air, gas lines and numerous other applications are only a few of the areas where the Pete's Plug are presently being used.

Valve Materials

Neoprene is a chloroprene based synthetic rubber and is resistant to deterioration from waxes, fats, oils, greases, petroleum products and most refrigerants.

Nordel is an ethylene-propylene based synthetic rubber and gives excellent service in hot and cold water and in some applications of low steam. Nordel is resistant to detergents, phosphate esters, ketone, alcohols, and glycols. It is **not** suitable for petroleum products.

Neoprene and nordel are proprietary materials and the information presented herein is believed to accurate and reliable. Peterson Equipment Co., Inc. Can assume no liability for results obtained or damages incurred through the application of this information. The information is intended as a guide and if in doubt ask!

Pressure Tests

The pressure gauge adapter has a probe constructed of 304 stainless steel. The probe is 0.156" in diameter and extends 2 inches on the standard adapter and $3\frac{1}{2}$ inches on the extra long adapter. The 1/8" diameter probe is less likely to become clogged with foreign material and resists bending. Also, the 1/8" diameter probe operates in either the $\frac{1}{4}$ " , $\frac{3}{8}$ " , or $\frac{1}{2}$ " Pete's Plug. Please note the 500XL gauge adapter will operate in any of the Pete's Plug's. It is intended for use with any of the XL Pete's Plug's.

Temperature Tests

The test thermometer is constructed of stainless steel, has a 1 3/4" dial and has a bi-metallic sensing element. Accuracy within ½% over the entire scale can be expected. Pointer adjustment or recalibrations can be made by turning the hex nut on the back of the dial case while firmly holding the dial case. The stem should be immersed in a known, controlled temperature bath. Stem lengths are 5" and diameters of 0.156" or 4mm are maximum diameters that can be inserted onto the Pete's Plug. Digital thermometers have the same specifications but can not be recalibrated in the field.

Valve Core
Material
Neoprene
Nordel

Recommended

Maximum Temperature

200°F
275°F

Maximum Pressure 500PSIG 500PSIG Strap
Color Coded
Blue Strap-Neoprene

Blue Strap-Neoprene Yellow Strap-Nordel

ORDERING INFORMATION

<u>Part Number</u>	Valve Core Material	<u>Size</u>	Body and Cap Material	<u>Length</u>
100	Neoprene	1/4"NPT	Brass	1½"
110	Nordel	11	Brass	11
100XL	Neoprene	1/4''NPT	Brass	3"
110XL	Nordel	"	Brass	"
300	Neoprene	3/8"NPT	Brass	1½"
310	Nordel	44	rr	**
400	Neoprene	1/4"NPT	316SS	1½"
410	Nordel	44	"	**
700	Neoprene	½"NPT	Brass	1½"
710	Nordel	**	Brass	"
700XL	Neoprene	½"NPT	Brass	3"
710XL	Nordel	"	Brass	11
12500	Neoprene	1/8"NPT	Brass	11/4"

Cap retaining straps are standard on all Pete's Plugs.

Gauge Adapters

(All Connections 1/4"NPTF)

500 Gauge Adapter with 1/8" Diameter Probe 500XL Gauge Adapter with 1/8" Diameter Probe for XL Plugs 510 Gauge Adapter with 1/16" Diameter Probe** 520 Gauge Adapter with 1/8" Diameter Probe all 316SS

Bi-Metal Pocket Testing Thermometers 5" Stem With External Calibration

Part Number	<u>Range</u>	Degree Division
600	-40° to 160°F	2
601	25° to 125°F	1
603	0° to 220°F	2

Test Kits

1500 Temperature and Pressure Test Kit 1500XL Temperature and Pressure Test Kit-XL

U.S. Patent Number 5079962 Canadian Patent Number 981192. Patent pending in United States and other countries. All patents are sole property of the Peterson Equipment Co., Inc.® A trademark of the Peterson Equipment Company, Inc.

Email: sales@imacsystems.com

Digital Pocket Testing Thermometers 5" StemPart NumberRangeDegree Division606-58° to 571°F0.1

^{**510} is the only gauge adapter that will fit part number 12500

BX91403 shown

Adjustable Angle

7" • 9" • 12" Scale Sizes

7", 9" 12" Scale
± 1 Scale Division Accuracy
Cast Aluminum Case
Adjustable Angle Stem

Recognized globally as the Trerice "BX" Industrial Thermometer, this is an instrument of extreme accuracy and rugged dependability. Available in scale sizes of 7" (AX9), 9" (BX9), & 12" (CX9), with a durable cast aluminum case, this universally adjustable, liquid-in-glass thermometer is the most widely specified instrument of its kind.

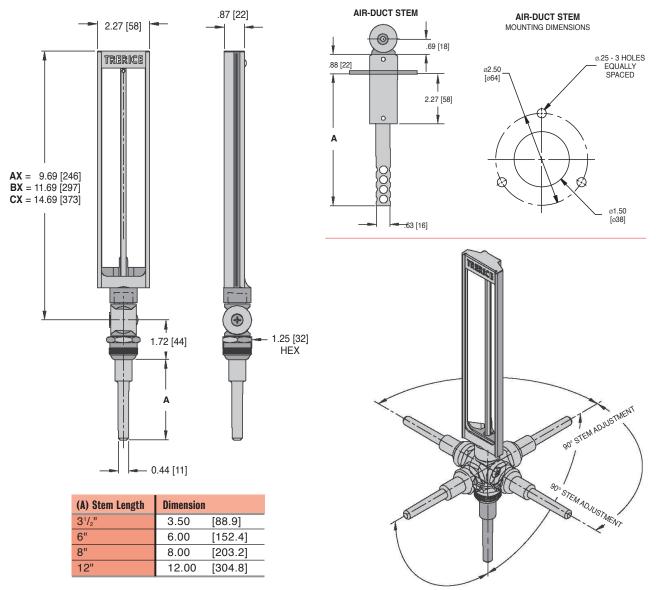
 Optional features available: Please consult the Options & Accessories Section for details.

Thermowell

 For applications where the process media may be corrosive or contained under pressure, the use of a thermowell is required to prevent damage to the thermometer and facilitate its removal from the process.
 (Refer to page 152)

Models	Scale Sizes
AX9	7"
BX9	9" Adjustable Angle
CX9	12"
Fill Type	Spirit: Blue colored, organic
Case	Cast Aluminum, blue epoxy finish
Stem	Aluminum, brass, 304 stainless steel or air-duct style available
Connection	Standard: 11/4-18 UNEF-2A coupling nut
	Air-Duct: Reversible mounting flange with 3 bolt holes
Window	Ultraviolet protective acrylic on ranges to 300° F Glass on ranges over 300° F
Tube	Lens front, magnifying type
Scale	Aluminum, white background with black graduations and markings
Top Plate	ABS
Accuracy	±1 scale division
Approximate	e Shipping Weight AX9: 1.5 lbs [0.68 kg] BX9: 1.6 lbs [0.73 kg] CX9: 2.0 lbs [0.91 kg]

HOW TO ORDER


Sample Order Number:	BX9	1 403	07
----------------------	-----	-------	----

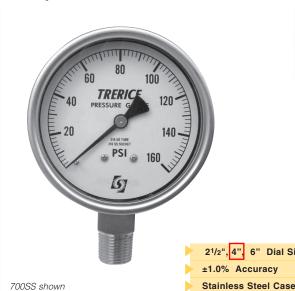
Model	Stem (Material)	Stem (Length)	Specific Range
AX9 7" Adjustable BX9 9" Adjustable CX9 12" Adjustable	1 Aluminum (standard) 2 Brass 3 304 SS 9 Air-Duct (Aluminum)*	403 31/2" 406 6" 408 8" 512 12" 006 6" Air-Duct 012 12" Air-Duct	See Standard Ranges

^{*} Not for use with Thermowells

Adjustable Angle

All dimensions are nominal. Dimensions in [] are in millimeters.

Standard Ranges


Ota	Standard Hanges								
Fah	renheit Scale	Cels	ius Scale	Dual	Scale	Fahrenh	eit	Celsius	
Range Code	Range	Range Code		Range Code	Range	Figure Intervals	Minor Divisions	Figure Intervals	Minor Divisions
01	–40° to 110°F	17	–40° to 40°C	41	-40° to 110°F & -40° to 40°C	10°	2°	5°	1°
02	0° to 100°F	24	–18° to 38°C	42	0° to 100°F & -18° to 38°C	5°	1°	5°	0.5°
03	30° to 130°F	25	0° to 55°C	43	30° to 130°F & 0° to 55°C	5°	1°	5°	1°
04	0° to 160°F	26	–18° to 70°C	44	0° to 160°F & -18° to 70°C	10°	2°	5°	1°
06	30° to 180°F	27	0° to 83°C	46	30° to 180°F & 0° to 83°C	10°	2°	5°	1°
07	30° to 240°F	19	0° to 115°C	47	30° to 240°F & 0° to 115°C	10°	2°	5°	1°
08	30° to 300°F	20	0° to 150°C	48	30° to 300°F & 0° to 150°C	10°	2°	10°	2°
09	50° to 400°F	28	10° to 205°C	49	50° to 400°F & 10° to 205°C	25°	5°	10°	2°
15	50° to 500°F	31	10° to 260°C	55	50° to 500°F & 10° to 260°C	25°	5°	10°	2°

Dual scale figure intervals may differ

700 Series

Field Liquid Fillable • Stainless Steel Case

The Trerice 700 Series Industrial Gauge is designed for the varying needs of the world's industrial applications. This gauge has a stainless steel case and ring. Its sturdy interior design and field liquid-fill capability (no kit required) provide the durability and accuracy required for industrial process environments. Available wetted parts are bronze tube with brass socket, stainless steel tube and socket, or Monel tube and socket.

- & Accessories Section for details.

•	Optional features and case
	style variations available:
	Please consult the Options
	O Assessation Continue for

Field Liquid Fillable

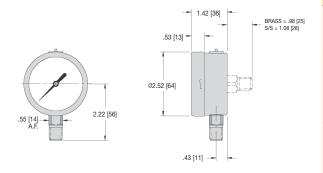
6" Dial Sizes

For correct use and
application of all pressure
gauges, please refer to:
Pressure Gauge Standard
ASME B40.100.

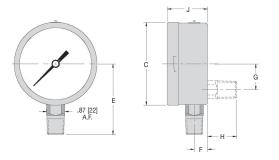
HOW TO ORDER

Sample Order Number: 700LFSS 25 02 B A 140

Model	Dial Size	Connection Size	Connection Location	Units of Measure	Range Code
700B	25 21/2" *	02 1/4 NPT	L Lower	A psi	See Standard
700LFB	40 4"	04 1/2 NPT	B Back	D psi/kPa	Ranges
700SS	60 6"				
700LFSS					
700M					
700LFM					


^{*} Not available with Monel wetted parts or with 1/2 NPT connection.

Specifications Models **Wetted Parts** (dry) Bronze tube, 700LFB (liquid-filled) brass socket (dry) 316 stainless steel 700LFSS (liquid-filled) tube and socket 700M (dry) Monel tube and socket 700LFM (liquid-filled) (meets NACE MR 01.75) Dial Sizes 21/2", 4", 6" Glycerine. Other fills available. See Options & Accessories. Movement Stainless steel Connection 21/2" Dial Size: Lower male or center back male, 1/4 NPT 4", 6" Dial Size: Lower male or lower back male, 1/4 or 1/2 NPT Case 304 stainless steel, satin finished, stem-mounted flangeless Ring Bayonet type, 304 stainless steel Window Laminated safety glass **Pointer** 21/2" Dial Size: Adjustable, black finished 4", 6", Dial Size: Micro adjustable, black finished **Dial Face** Aluminum, white background with black graduations and markings Accuracy ±1.0% Full Scale. ASME B40.100 Grade 1A **Maximum Temperature** 700SS, 700M 250°F (121°C) 700B, 700LFB, 700LFSS, 700LFM: 150°F (65°C) **Approximate Shipping Weight** 700B, 700SS 21/2" Dial Size: 0.4 lbs [0.18 kg] 700LFB, 700LFSS, 700LFM 21/2" Dial Size: 0.5 lbs [0.23 kg] 700B, 700SS, 700M 4" Dial Size: 1.3 lbs [0.59 kg] 700LFB, 700LFSS, 700LFM 4" Dial Size: 2.1 lbs [0.95 kg] 700B, 700SS, 700M 6" Dial Size: 2.0 lbs [0.91 kg] 700LFB, 700LFSS, 700LFM 6" Dial Size: 3.8 lbs [1.72 kg]



Dial Size	Material	C	E	F	G	H	J
4"	Brass	3.98 [101]	3.39 [86]	0.94 [24]	1.04 [27]	1.44 [37]	2.24 [57]
	SS	3.98 [101]	3.39 [86]	0.94 [24]	1.36 [35]	1.38 [35]	2.24 [57]
6"	Brass	6.34 [161]	4.57 [116]	0.69 [18]	1.04 [27]	1.44 [37]	1.97 [50]
	SS	6.34 [161]	4.57 [116]	0.69 [18]	1.36 [35]	1.38 [35]	1.97 [50]

21/2"

Standard Ranges

psi Ranges (A)							
	All Size	s					
Range Code	Specific Range (psi)	Figure Intervals	Minor Divisions				
010	30" Hg to 0	5	0.5				
020	30" Hg to 15 psi	10/5	0.5/0.5				
030	30" Hg to 30 psi	10/5	1/1				
040	30" Hg to 60 psi	10/10	2/1				
050	30" Hg to 100 psi	30/20	2/2				
060	30" Hg to 150 psi	30/20	5/2				
070	30" Hg to 300 psi	30/50	5/5				
080	0 to 15 psi	3	0.2				
090	0 to 30 psi	5	0.5				
100	0 to 60 psi	10	1				
110	0 to 100 psi	10	1				
120	0 to 160 psi	20	2				
130	0 to 200 psi	20	2				
140	0 to 300 psi	50	5				
150	0 to 400 psi	50	5				
160	0 to 600 psi	100	10				
	Ranges over 600 psi are 700B or 700LFB in 4" o						
180	0 to 1000 psi	100	20				
190	0 to 1500 psi	300	20				
200	0 to 2000 psi	200	20				
210	0 to 3000 psi	500	50				
220	0 to 5000 psi	1000	100				
230	0 to 10,000 psi	2000	200				
	Ranges over 10,000 psi are 700SS or 700LFSS in 4"						
240	0 to 15,000 psi	2000	200				

For dual scale ranges, specify the appropriate **Units of Measure: D** (psi/kPa) followed by the corresponding **A** (psi) **Range Code**. Other pressure ranges are also available including: Altitude, Ammonia, Refrigerant and Receiver. Consult Special Application Ranges section or factory for availability.

Accessories

PRESSURE GAUGES

Impulse Dampeners

870 Series Pressure Impulse Dampeners are designed to improve readability and prevent wear on delicate gauge mechanisms by slowing rapid pressure changes and reducing shock and chattering. An impulse dampener should be installed on a gauge in any application where pressure spikes and/or pulsations may be present. Trerice Impulse Dampeners are engineered for field serviceability (cleaning and parts replacement) and are constructed from brass or stainless steel for use on a variety of pressure media.

870 Series Impulse Dampeners

Item No.	Body & Insert Material	Connection Size (NPT)	Maximum Pressure (psig)	Service	Approximate Shipping Weight
870-1	Brass	1/4	1000	Air, water, steam and gases	0.5 lbs [0.23 kg]
870-2	Brass	1/4	1000	Gasoline and light oils	0.5 lbs [0.23 kg]
870-3	Brass	1/4	1000	Lubricating and heavy oils	0.5 lbs [0.23 kg]
870-7	303SS	1/4	5000	Includes 3 pistons for various viscosities	0.5 lbs [0.23 kg]
870-10	303SS	1/2	10,000	Includes 3 pistons for various viscosities	0.8 lbs [0.36 kg]
870-13	316SS	1/4	5000	Includes 3 pistons for various viscosities	0.5 lbs [0.23 kg]
870-16	316SS	1/2	10,000	Includes 3 pistons for various viscosities	0.8 lbs [0.36 kg]

Pressure Snubbers

872 Series Pressure Snubbers are designed to improve readability and prevent wear on delicate gauge mechanisms by slowing rapid pressure changes and reducing shock and chattering. A pressure snubber should be installed on a gauge in any application where pressure spikes and/or pulsations may be present. If a single snubber does not correct the oscillation, it is recommended to place an additional snubber in line with the first. Trerice Pressure Snubbers reduce the pulsation by forcing the pressure medium through a porous metal core and are constructed from brass or 303 stainless steel for use on a variety of pressure media.

872 Series Pressure Snubbers

Item	Body & Insert	Connection	Maximum	Service	Approximate
No.	Material	Size (NPT)	Pressure (psig)		Shipping Weight
872-1	Brass	1/4	1000	Air and gases	0.1 lbs [0.05 kg]
872-2	Brass	1/4	1000	Water, steam, gasoline and light oils	0.1 lbs [0.05 kg]
872-3	Brass	1/4	1000	Lubricating and heavy oils	0.1 lbs [0.05 kg]
872-4	303SS	1/4	2000	Air and gases Water, steam, gasoline and light oils Lubricating and heavy oils	0.3 lbs [0.14 kg]
872-5	303SS	1/4	2000		0.3 lbs [0.14 kg]
872-6	303SS	1/4	2000		0.3 lbs [0.14 kg]
872-7	Brass	1/2	5000	Air and gases Water, steam, gasoline and light oils Lubricating and heavy oils	0.1 lbs [0.05 kg]
872-8	Brass	1/2	5000		0.1 lbs [0.05 kg]
872-9	Brass	1/2	5000		0.1 lbs [0.05 kg]
872-10	303SS	1/2	10,000	Air and gases Water, steam, gasoline and light oils Lubricating and heavy oils	0.3 lbs [0.14 kg]
872-11	303SS	1/2	10,000		0.3 lbs [0.14 kg]
872-12	303SS	1/2	10,000		0.3 lbs [0.14 kg]

Accessories

PRESSURE GAUGES

Coil Syphons

885 Series Coil Syphons are designed for use on steam service to form a pocket of water between the pressure gauge and the process steam, thereby preventing the steam from reaching the bourdon tube of the pressure gauge. Trerice Coil Syphons are constructed of steel, brass, or 304 stainless steel with a 180° coil for use on a variety of requirements. Other materials and coil styles are available; consult factory.

885 Series Coil Syphons

Item No.	Material	Style	Connection Size (NPT)	Maximum Pressure (psig)	Maximum Temperature	Approximate Shipping Weight
885-1	Welded steel, schedule 40	180° coil	1/4	600	750°F	0.4 lbs [0.18 kg]
885-1.1	Seamless steel, schedule 40	180° coil	1/2	800	650°F	1.4 lbs [0.64 kg]
885-2	Seamless brass, schedule 40	180° coil	1/4	250	406°F	0.4 lbs [0.18 kg]
885-3	Chrome plated brass, schedule 40	180° coil	1/4	250	406°F	0.4 lbs [0.18 kg]
885-4	Seamless steel 304SS, schedule 40	180° coil	1/4	1300	650°F	0.4 lbs [0.18 kg]
885-4.1	Seamless steel 304SS, schedule 40	180° coil	1/2	1000	650°F	1.4 lbs [0.64 kg]
885-6	Seamless steel 316SS, schedule 40	180° coil	1/4	1300	650°F	0.4 lbs [0.18 kg]
885-6.1	Seamless steel 316SS, schedule 40	180° coil	1/2	1000	650°F	1.4 lbs [0.64 kg]

Needle Valves

735/740 Series Needle Valves are of the rising stem type and are designed to shut off the flow of the process media to the pressure instrument, thereby allowing the instrument to be isolated from the pressure media or removed from service. Needle valves may also be used to throttle flow and aid in dampening pulsations. Trerice Needle Valves are constructed from brass, carbon steel and stainless steel for use on a variety of pressure media. It is recommended to place a needle valve, ball valve or gauge cock in line before every pressure gauge installation.

735-2 735-4

735-8 740-3 740-11

735-9 740-4 740-9

735/740 Series Needle Valves

Item No.	Туре	Connection Size (NPT)	Body	Seat	Stem	Packing	Maximum Pressure (psig)	Maximum Temperature	Approximate Shipping Weight
735-2	FXF	1/4	Brass	Brass	Brass	Teflon	2000	200°F	0.3 lbs [0.14 kg]
735-4	FXF	1/4	Carbon steel	Teflon	316SS	Teflon	4000	200°F	0.3 lbs [0.14 kg]
735-8	FXF	1/4	316SS	316SS	316SS	Teflon	6000	200°F	0.3 lbs [0.14 kg]
735-9	MXF	1/4	316SS	316SS	316SS	Teflon	6000	200°F	0.3 lbs [0.14 kg]
740-3	FXF	1/2	Carbon steel	Carbon steel	316SS	Teflon	10.000	200°F	1.0 lbs [0.45 kg]
740-4	MXF	1/2	Carbon steel	Carbon steel	316SS	Teflon	10,000	200°F	1.3 lbs [0.59 kg]
740-9	MXF	1/2	316SS	Delrin	316SS	Teflon	6000	200°F	1.3 lbs [0.59 kg]
740-11	FXF	1/2	316SS	316SS	316SS	Teflon	10,000	200°F	1.0 lbs [0.45 kg]

Accessories

PRESSURE GAUGES

Ball Valves

866 Ball Valve is a single entry flow valve, incorporating a Teflon seat to shut off the flow of process media to the pressure instrument, thereby allowing the instrument to be isolated from the pressure media or removed from service. The Trerice 866 Ball Valve is constructed from brass, for use on air, water, oil and other non-corrosive process media. It is recommended to place a needle valve, ball valve or gauge cock in line before every pressure gauge installation.

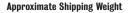
866 Ball Valve

_	Item No.	Туре	Connection Size	Body Seat Ball			Handle	Maximum Pressure (psig)	Maximum Approximate Temperature Shipping Weig	
	866	FXF	1/4 NPT	Brass	Teflon	Plated brass	Lever	500 psig	180°F	0.1 lbs [0.05 kg]

Gauge Cocks

865/880 Series Quarter Turn Gauge Cocks provide an economical way to shut off the flow of air to the pressure instrument, thereby allowing the instrument to be isolated from the pressure media or removed from service. Trerice Gauge Cocks are constructed from brass and are intended for use on air lines where leakage is not of concern. It is recommended to place a needle valve, ball valve or gauge cock in line before every pressure gauge installation.

In applications where process media leakage may result in possible personal injury or property damage, gauge cocks should not be specified as they contain no packing gland and leakage may result. For tight shut-off and prevention of leakage, use of a Trerice Ball Valve or Needle Valve is required.



865/880 Series Gauge Cocks

Item No.	Туре	Connection pe Size Body					Maximum Temperature	Approximate Shipping Weight		
865	FXF	1/4 NPT	Brass	Brass	200	500°F	0.1 lbs [0.05 kg]			
865MFG	MXF	1/4 NPT	Brass	Brass	200	500°F	0.1 lbs [0.05 kg]			
865-1	FXF	1/4 NPT	Brass	Brass	300	500°F	0.3 lbs [0.14 kg]			
880	MXF	1/4 Union	Brass	Brass	150	500°F	0.5 lbs [0.23 kg]			

Pointer Jack

The **D329 Pointer Jack** is required for removing the pointer of a pressure gauge without causing damage to the dial face, pointer, pointer shaft or movement of the gauge.

0.1 lbs [0.05 kg]

Test Plugs & Accessories

The **Trerice Test Plug** provides a convenient access port for determining the pressure and/or temperature of process media contained in a pipe line or vessel. The test plug is designed for use in chilled or hot water systems and is permanently installed in the system at the desired test location. A test thermometer or pressure gauge with test adapter can be inserted through the plug to determine the conditions within the system. When the probe is withdrawn, the inner valve plug closes to seal the system. The test plug includes a removable cap to protect the inner valve plug and provide a secondary seal.

Nordel, otherwise known as EPDM, provides excellent service in hot or cold water. **Nordel** should not be used with hydrocarbon solvents, hydrocarbon oils, chlorinated hydro carbons or turpentine.

Neoprene, a synthetic rubber, provides excellent service in ammonia, high aniline point petroleum oils and silicate ester lubricants. Neoprene should not be used with silicone greases, silicone oils or di-ester based lubricants.

Test plugs are designed for initial startup and testing, not continuous or frequent use. If continuous or frequent use is desired or expected, a test well should be installed for temperature applications and a needle valve installed for pressure applications.

Tests should be made as quickly as possible because the inner plug resealing time is dependent upon the length of time the probe remains inserted, as well as the temperature and pressure of the system. The test plug may take longer to reseal at lower temperatures or pressures. The probe used for testing should never exceed a diameter of 0.156" (4 mm). The pressure gauge used for testing should always have a range of twice the system pressure.

Test Plugs

Test Plug Item No.	Test Plug with Retainer Item No.	Connection Size (NPT)	Body & Cap	Core	Max Pres. (psig)	Max Temp.	Approximate Shipping Weight
D3741	D3764	1/4	Brass	Nordel	1000	350°F	0.1 lbs [0.05 kg]
D3743	D3763	1/4	Brass	Neoprene	1000	200°F	0.1 lbs [0.05 kg]
D3758	D3766	1/4	316SS	Nordel	1000	350°F	0.1 lbs [0.05 kg]
D3757	D3765	1/4	316SS	Neoprene	1000	200°F	0.1 lbs [0.05 kg]
D3742	D3770	1/2	Brass	Nordel	1000	350°F	0.2 lbs [0.09 kg]
D3744	D3769	1/2	Brass	Neoprene	1000	200°F	0.2 lbs [0.09 kg]
D3762	D3772	1/2	316SS	Nordel	1000	350°F	0.2 lbs [0.09 kg]
D3761	D3771	1/2	316SS	Neoprene	1000	200°F	0.2 lbs [0.09 kg]

Accessories

Item No.	Description	Approx. Shipping Weight
D3747	Gauge Adapter, 1/8" diameter	0.1 lbs [0.05 kg]
D3749	2" Brass Extension, 1/4 NPT	0.1 lbs [0.05 kg]
D3753	2" Brass Extension, 1/2 NPT	0.2 lbs [0.09 kg]

D3750

Test Kits

Item No.	Pressure Range (psi)	Approximate Shipping Weight
D3750	0 to 100	1.4 lbs [0.64 kg]
D3751	0 to 200	1.4 lbs [0.64 kg]
D3752	0 to 300	1.4 lbs [0.64 kg]
D3748	0 to 600	1.4 lbs [0.64 kg]

Each test kit contains:

- (1) 700B Pressure Gauge,
- (1) B82105P03F&C Thermometer,
- (1) B82105P05F&C Thermometer,
- (1) D3747 Gauge Adapter,
- (1) Carrying Case

Test Kit Replacement Items

Item No.	Description	Approximate Shipping Weight
700B2502LA110	700B Pressure Gauge, 21/2", 1/4 NPT, lower connection, 0 to 100 psi	0.4 lbs [0.18 kg]
700B2502LA130	700B Pressure Gauge, 21/2", 1/4 NPT, lower connection, 0 to 200 psi	0.4 lbs [0.18 kg]
700B2502LA140	700B Pressure Gauge, 21/2", 1/4 NPT, lower connection, 0 to 300 psi	0.4 lbs [0.18 kg]
700B2502LA160	700B Pressure Gauge, 21/2", 1/4 NPT, lower connection, 0 to 600 psi	0.4 lbs [0.18 kg]
B82105P03	B82105 Bimetal Thermometer, 13/4" dial size, 5" stem, 25° to 125°F & C	0.4 lbs [0.18 kg]
B82105P05	B82105 Bimetal Thermometer, 13/4" dial size, 5" stem, 20° to 240°F & C	0.4 lbs [0.18 kg]

77CLF-A Series

2 Piece Full Port Bronze Ball Valve

SUBMITTAL SHEET

Flow Controls

Manufacturer Substitution

DESCRIPTION

The Apollo® 77CLF "Contractor Series" Lead Free Ball Valve features a dezincification resistant bronze body, premium RPTFE seats and stem packing and a "Solid Ball" design that delivers true full-port flow performance. Cast and machined in Apollo's South Carolina manufacturing plants using proven EZ-Solder™ Lead Free materials.

FEATURES

- Easily Identifiable White Handle and Blue "Lead Free" Hang Tag
- EZ-Solder™ Lead Free Bronze**
- Lead Free Brass & Bronze Materials
- Blowout-Proof Stem Design
- **RPTFE Seats & Seals**
- Manufactured and 100% Factory Tested in USA . (-04) 2 % Stem Extension

APPROVALS

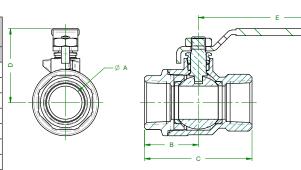
- MSS SP-110 Compliant
- NSF/ANSI 61 Water Quality
- NSF/ANSI 372 Lead Free
- ANSI 3rd Party Approval to 0.25% Lead Max.
- IAPMO R&T / UPC IGC Z1157
- City of Los Angeles DBS
- CRN: 0C10908.5C

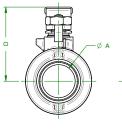
PERFORMANCE RATING

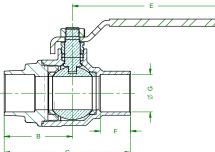
- · Maximum Pressure: <mark>600 psi</mark> CWP, 150 psi SWP
- · Maximum Temperature: 450°F
- · Vacuum Service to 29 in. Hg

OPTIONS

- · (-01) Standard Lever and Trim
- · (-07) Tee Handle
- · (-10) SS Handle and Nut
- (-11) Therma-Seal™ Insulating Tee
- (-27) Locking Handle
- (-50) 2 1/4" Locking Stem Extension
- (-92) Balancing Stop
- (-94) 2 1/4" Stem Extension and Balancing Stop
- 77CLF140/240 Series 316 SS Ball and Stem (All sizes including 2-1/2")


STANDARD MATERIALS LIST


GLAND NUT	ASTM B16 Brass
NUT	Zinc Plated Steel
PACKING	RPTFE
SEATS	RPTFE
STEM	C27451 Lead Free Brass
BALL	C27451 Lead Free Brass Cr. Plated
RETAINER	C27451 Lead Free Brass (¼" to 1") B584-C89836 Lead Free Bronze (1 ¼" - 2 ½")
BODY	B584-C89836 Lead Free Bronze
HANDLE	Zinc Plated Steel/Vinyl


**77CLF-2xxA intended for soft solder installation using solders with melting temperature of < 500°F.

DIMENSIONS

PART NO.	SIZE			DIME	NSION	S (IN.)			_	WT.*
PART NO.	(IN.)	Α	В	С	D	Е	F	G	C _v	(LB.)
NPT										
77CLF-101-01A	1/4"	0.37	0.88	1.8	1.65	2.82	-	-	5	0.6
77CLF-102-01A	3/8"	0.37	0.94	1.86	1.65	2.82		-	7	0.6
77CLF-103-01A	1/2"	0.50	1.15	2.29	1.79	3.82	-	-	16	0.6
77CLF-104-01A	3/4"	0.75	1.34	2.67	1.91	3.82	-	-	36	1.0
77CLF-105-01A	1"	1.00	1.63	3.24	2.24	4.72	-	-	68	1.8
77CLF-106-01A	1-1/4"	1.25	1.9	3.75	2.46	4.72	-	-	125	4.2
77CLF-107-01A	1-1/2"	1.50	2.06	4.11	2.9	5.37	-	-	177	4.6
77CLF-108-01A	2"	2.00	2.43	4.85	3.68	7.72		-	389	7.9
77CLF-109-01A	2-1/2"	2.50	3.03	6.02	4.13	7.72	-	-	503	16.4
SOLDER										
77CLF-202-01A	3/8"	0.37	1.24	2.17	1.65	2.82	0.41	0.50	7	0.6
77CLF-203-01A	1/2"	0.50	1.36	2.47	1.79	3.82	0.50	0.63	16	0.6
77CLF-204-01A	3/4"	0.75	1.73	3.20	1.91	3.82	0.75	0.88	36	1.0
77CLF-205-01A	1"	1.00	2.06	3.81	2.24	4.72	0.91	1.13	68	1.5
77CLF-206-01A	1-1/4"	1.25	2.22	4.21	2.46	4.72	0.97	1.38	125	3.9
77CLF-207-01A	1-1/2"	1.50	2.53	4.90	2.9	5.37	1.09	1.63	177	5.9
77CLF-208-01A	2"	2.00	3.15	6.07	3.68	7.72	1.34	2.13	389	7.5
77CLF-209-01A	2-1/2"	2.50	3.78	7.17	4.13	7.72	1.48	2.63	503	14.5

^{*}LEAD FREE: The wetted surfaces of this product shall contain no more than 0.25% lead by weighted average. Complies with Federal Public Law III-380. ANSI 3rd party approved and listed.

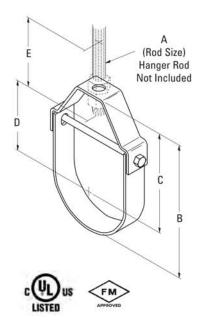
^{*}WEIGHTS BASED ON STANDARD CONFIGURATION

Manufacturer Substitution

B3100 - Standard Clevis Hanger

SLIDE-RITE™ Clevis Hanger Features

Pipe will not 'pinch' when installing.


 15° swing in either direction allows pipe to easily feed thru.

Engineered design aligns bolt holes for quicker overhead installation.

*SLIDE-RITE™ Clevis Hanger design, as shown below, for sizes 2, 21/2, 3, 4, 5 & 6.

Pat. No. 5,848,770 5,924,655

Component of State of California OSHPD Approved Seismic Restraints System

B
Bottom of pipe to top of hanger.

C
Center of pipe to top of hanger.

D
Rod Take-Out
Center of pipe to bottom of hanger rod.

E
Minimum thread length of hanger rod

Adjustment
Top of cross bolt to bottom of hanger
rod nut inside the hanger.

	Nominal Pipe Size		Rod	Rod Size A		B C		C		D
Part No.	in.	(mm)	Std	NFPA**	in.	(mm)	in.	(mm)	in.	(mm)
B3100-1/2	1/2"	(15)	3/8"-16	3/8"-16	21/8"	(54.0)	13/4"	(44.4)	15/16"	(23.8)
B3100-3/4	3/4"	(20)	3/8"-16	3/8"-16	21/2"	(63.5)	2"	(50.8)	11/8"	(28.6)
B3100-1	1"	(25)	3/8"-16	3/8"-16	27/8"	(73.0)	21/4"	(57.1)	13/8"	(34.9)
B3100-11/4	11/4"	(32)	3/8"-16	3/8"-16	31/2"	(88.9)	211/16"	(68.2)	113/16"	(46.0)
B3100-11/2	11/2"	(40)	3/8"-16	3/8"-16	4"	(101.6)`	31/16"	(77.8)	21/4"	(57.1)
B3100-2 *	2"	(50)	3/8"-16	3/8"-16	41/2"	(114.3)	3 ⁵ /16"	(84.1)	21/2"	(63.5)
B3100-2 ¹ /2 *	21/2"	(65)	1/2"-13	3/8"-16	53/8"	(136.5)	315/16"	(100.0)	31/16"	(77.8)
B3100-3 *	3"	(80)	1/2"-13	3/8"-16	61/2"	(165.1)	43/4"	(120.6)	315/16"	(100.0)
B3100-3 ¹ /2	31/2"	(90)	1/2"-13	3/8"-16	71/4"	(184.1)	51/4"	(133.3)	41/16"	(103.2)
B3100-4 *	4"	(100)	⁵ /8"-11	3/8"-16	73/4"	(196.8)	51/2"	(139.7)	51/2"	(139.7)
B3100-5 *	5"	(125)	⁵ /8"-11	1/2"-13	83/4"	(222.2)	61/8"	(155.6)	6"	(152.4)
B3100-6 *	6"	(150)	3/4"-10	1/2"-13	105/16"	(261.9)	6 ¹⁵ /16"	(176.2)	7"	(177.8)
B3100-8	8"	(200)	3/4"-10	1/2"-13	123/4"	(323.8)	8 ⁷ /16"	(214.3)	71/8"	(181.0)
B3100-10	10"	(250)	7/8"-9	5/8"-11	151/8"	(384.2)	93/4"	(247.6)	83/8"	(212.7)
B3100-12	12"	(300)	7/8"-9	⁵ /8"-11	171/2"	(444.5)	111/8"	(282.6)	911/16"	(246.1)
B3100-14	14"	(350)	1"-8		193/8"	(492.1)	123/8"	(314.3)	105/8"	(269.9)
B3100-16	16"	(400)	1"-8	**	213/8"	(542.9)	133/8"	(339.7)	119/16"	(293.7)
B3100-18	18"	(450)	1"-8		25"	(635.0)	16"	(406.4)	143/16"	(360.3)
B3100-20	20"	(500)	11/4"-7		283/4"	(730.2)	173/4"	(450.8)	16 ⁵ /8"	(422.3)
B3100-24	24"	(600)	11/4"-7		323/4"	(831.8)	193/4"	(501.6)	185/8"	(473.1)
B3100-30	30"	(750)	11/4"-7		3915/16"	(1014.4)	24 ¹⁵ /16"	(633.4)	223/4"	(577.8)
B3100-36	36"	(900)	11/4"-7		46"	(1168.4)	28"	(711.2)	25"	(635.0)

Component of State of

California OSHPD Approved Seismic Restraints System

B3100 - Standard Clevis Hanger

Size Range: 1/2" (15mm) to 36" (900mm)

Material: Steel

Function: Recommended for the suspension of non-insulated pipe or insulated pipe with a B3151 shield.

Note: When an oversized clevis is used, a pipe spacer should be placed over the cross bolt to assure that the lower U-strap will not move in on the bolt. When attaching seismic bracing to the clevis hangers, a Fig. 1CBS (cross bolt spacer) must be installed. See Seismic Restraints Approval Guidelines.

Order pipe sleeves Fig. 1CBS-(pipe size) separately.

Approvals: Included in our Seismic Restraints Catalog approved by the State of California Office of Statewide Health Planning and Development **(OSHPD)**. For additional load, spacing and placement information relating to OSHPD projects, please refer to the B-Line/TOLCO Seismic Restraint Systems Guidelines. Underwriter's Laboratories Listed in the USA **(UL)** and Canada **(cUL)** for sizes ³/4" (20mm) thru 12" (300mm). Factory Mutual Engineering Approved **(FM)** for ³/4" (20mm) thru 12" (300mm) pipe. Conforms to Federal Specification WW-H-171E & A-A-1192A, Type 1 and Manufacturers Standardization Society ANSI/MSS) SP-69 & SP-58, Type 1 Also available to accommodate rod schedule per National Fire Protection Association (NFPA) Pamphlet 13.

Maximum Temperature: 650°F (343°C).

Standard Finish: Plain, Electro-Galvanized, DURA GREEN™, or Hot-Dip Galvanized

also available in Stainless Steel

Order Bv: Part number and finish.

For AWWA - Ductile Iron Clevis Hangers, see B3102, page 52.

Special Note: Do not use the dimensions shown in the B3100 chart for NFPA hanger sizes.

Contact customer service for NFPA rod sizing on 1/2" (15mm) thru 12" (300mm) pipe.

Part numbers will be 1NFPA-pipe size.

	ı	E	Adjust	ment F	Desig	n Load	Approx.	Wt./100
Part No.	in.	(mm)	in.	(mm)	Lbs.	(kN)	Lbs.	(kg)
B3100- ¹ / ₂	21/2"	(63.5)	7/16"	(11.1)	730	(3.25)	25	(11.3)
B3100- ³ /4	21/2"	(63.5)	1/2"	(12.7)	730	(3.25)	29	(13.1)
B3100-1	21/2"	(63.5)	5/8"	(15.9)	730	(3.25)	35	(15.9)
B3100-1 ¹ / ₄	21/2"	(63.5)	7/8"	(22.2)	730	(3.25)	40	(18.1)
B3100-1 ¹ / ₂	21/2"	(63.5)	1 ³ /16"	(30.2)	730	(3.25)	42	(19.0)
B3100-2 *	21/2"	(63.5)	1 ⁵ /8"	(41.3)	730	(3.25)	52	(23.6)
B3100-2 ¹ / ₂ *	21/2"	(63.5)	2"	(50.8)	1350	(6.00)	90	(40.8)
B3100-3 *	21/2"	(63.5)	2"	(50.8)	1350	(6.00)	110	(49.9)
B3100-3 ¹ /2	21/2"	(63.5)	2"	(50.8)	1350	(6.00)	142	(64.4)
B3100-4 *	21/2"	(63.5)	2"	(50.8)	1430	(6.36)	132	(59.9)
B3100-5 *	21/2"	(63.5)	2"	(50.8)	1430	(6.36)	215	(97.5)
B3100-6 *	3"	(76.2)	2"	(50.8)	1940	(8.63)	320	(145.1)
B3100-8	31/2"	(88.9)	2 ⁵ /16"	(58.7)	2000	(8.89)	485	(220.0)
B3100-10	31/2"	(88.9)	2 ⁵ /16"	(58.7)	3600	(16.01)	846	(383.7)
B3100-12	31/2"	(88.9)	25/8"	(66.7)	3800	(16.90)	1083	(491.2)
B3100-14	4"	(101.6)	27/8"	(73.0)	4200	(18.68)	1432	(649.5)
B3100-16	4"	(101.6)	2 ¹¹ /16"	(68.3)	4600	(20.46)	2200	(997.9)
B3100-18	41/2"	(114.3)	3 ¹⁵ /16"	(100.0)	4800	(21.35)	2500	(1134.0)
B3100-20	5"	(127.0)	5 ³ /8"	(136.5)	4800	(21.35)	4400	(1995.8)
B3100-24	5"	(127.0)	5 ³ /8"	(136.5)	4800	(21.35)	5000	(2268.0)
B3100-30	5"	(127.0)	61/4"	(158.7)	6000	(26.69)	6600	(2993.7)
B3100-36	5"	(127.0	5 ⁷ /16"	(138.1)	6000	(26.69)	8474	(3843.8)

^{*}SLIDE-RITE™ Clevis Hanger design, as shown above, for sizes 2, 2¹/₂, 3, 4, 5 & 6.

All dimensions in charts and on drawings are in inches. Dimensions shown in parentheses are in millimeters unless otherwise specified.

B3170CT - Adjustable Swivel Hanger for Copper Tubing

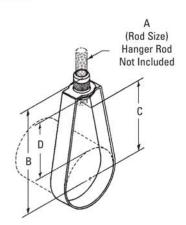
B3170CTC - Adjustable Swivel Hanger for Copper Tubing - Plastic Coated

Size Range: 1/2" (15mm) thru 6" (150mm) copper tubing

Material: Steel

Function: Recommended for the suspension of copper tubing, allowing for vertical adjustment. (Available with plastic coating to provide additional separation between tubing and hanger.)

Approvals: Conforms to Federal Specification WW-H-171E & A-A-1192A, Type 10 and Manufacturers Standardization Society ANSIMSS SP-69 & SP-58,


Type 10

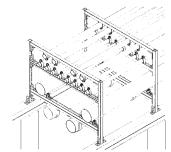
Standard Finish: DURA-COPPER™ Order By: Part number and finish.

B Center of pipe to top of knurled hanger rod nut.

C Rod Take-Out Center of pipe to bottom of hanger rod.

Top of pipe to bottom of hanger rod nut.

	Non	ninal	Rod Size		В	1	С	i	D
Part No.	Pipe	Size	Α	in.	(mm)	in.	(mm)	in.	(mm)
B3170CT-1/2	1/2"	(15)	3/8"-16	21/16"	(52.4)	11/8"	(28.6)	31/32"	(24.6)
B3170CT-3/4	3/4"	(20)	3/8"-16	25/16"	(58.7)	1 ⁵ /16"	(33.3)	11/32"	(26.2)
B3170CT-1	1"	(25)	3/8"-16	21/2"	(63.5)	19/16"	(39.7)	15/32"	(29.3)
B3170CT-1 ¹ /4	11/4"	(32)	3/8"-16	21/2"	(63.5)	19/16"	(39.7)	1"	(25.4)
B3170CT-1 ¹ / ₂	11/2"	(40)	3/8"-16	215/16"	(74.6)	2"	(50.8)	15/16"	(33.3)
B3170CT-2	2"	(50)	3/8"-16	31/8"	(79.4)	21/8"	(54.0)	13/16"	(30.2)
B3170CT-2 ¹ / ₂	21/2"	(65)	¹ /2"-13	41/16"	(103.2)	29/16"	(65.1)	13/8"	(34.9)
B3170CT-3	3"	(75)	1/2"-13	315/16"	(100.0)	33/4"	(95.2)	11/4"	(31.7)
B3170CT-31/2	31/2"	(90)	1/2"-13	47/16"	(112.7)	31/4"	(82.5)	11/2"	(38.1)
B3170CT-4	4"	(100)	1/2"-13	4 ¹¹ /16"	(119.1)	39/16"	(89.6)	19/16"	(39.7)
B3170CT-5	5"	(125)	1/2"-13	5 ¹⁵ /16"	(150.8)	45/16"	(109.5)	125/32"	(45.2)
B3170CT-6	6"	(150)	1/2"-13	611/16"	(169.9)	53/16"	(131.8)	21/8"	(54.0)


Part No.	Max. Re	ec. Load (kN)	Approx. lbs.	Wt./100 (kg)
B3170CT-1/2	180	(0.80)	8	(6.6)
B3170CT-3/4	180	(0.80)	10	(4.5)
B3170CT-1	180	(0.80)	10	(4.5)
B3170CT-1 ¹ /4	180	(0.80)	12	(5.4)
B3170CT-11/2	180	(0.80)	12	(5.4)
B3170CT-2	180	(0.80)	12	(5.4)
B3170CT-21/2	200	(0.89)	31	(24.0)
B3170CT-3	250	(1.11)	33	(14.9)
B3170CT-3 ¹ / ₂	300	(1.33)	39	(17.2)
B3170CT-4	360	(1.60)	40	(18.1)
B3170CT-5	480	(2.13)	95	(43.1)
B3170CT-6	630	(2.80)	118	(53.5)

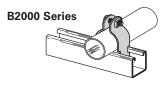
Manufacturer Substitution

The B-Line series metal framing support system is designed with many time-saving features. Fully adjustable and reusable, with a complete line of channels, fittings, and accessories for multi-purpose applications.

SELECTION CHART for Channels, Materials and Hole Patterns

	Ohaanal Diananaiana			I.	Material & Thickness			Channel Hole Pattern					
	Channel Dimensions		Stainless Steel		SH	s	H1 ⁷ /8	тн	KO6				
Channel	Heig T	ght _]	wi]	dth	Steel	Alum. <u>2</u>	Type 304 <u>3</u>	Type 316 <u>4</u>	2000			3223	43/
B11	31/4"	(82.5)	1 ⁵ /8"	(41.3)	12 Ga.			_	1	1	1	-	<u>1</u>
B12	2 ⁷ /16"	(61.9)	1 ⁵ /8"	(41.3)	12 Ga.	.105		_	12	1	<u>1</u> <u>2</u>	-	<u>1</u> <u>2</u>
B22	1 ⁵ /8"	(41.3)	1 ⁵ /8"	(41.3)	12 Ga.	.105	12 Ga.	12 Ga.	1234	1	1234	1	<u>1</u> <u>2</u>
B24	1 ⁵ /8"	(41.3)	1 ⁵ /8"	(41.3)	14 Ga.	.080	14 Ga.	14 Ga.	1234	1	1234		<u>1 2</u>
B26	1 ⁵ /8"	(41.3)	1 ⁵ /8"	(41.3)	16 Ga.			-	1	<u>1</u>	1		<u>1</u>
B32	1 ³ /8"	(34.9)	1 ⁵ /8"	(41.3)	12 Ga.		12 Ga.	_	<u>13</u>	1	<u>1</u> <u>3</u>		1_
B42	1"	(25.4)	15/8"	(41.3)	12 Ga.		12 Ga.	-	<u>13</u>	<u>1</u>	<u>1</u> <u>3</u>		<u>1</u>
B52	13/16"	(20.6)	15/8"	(41.3)	12 Ga.			_	1	1	1		1
B54	13/16"	(20.6)	15/8"	(41.3)	14 Ga.	.080	14 Ga.	14 Ga.	1234	<u>1</u>	1234		<u>1</u> <u>2</u>
B56	¹³ /16"	(20.6)	1 ⁵ /8"	(41.3)	16 Ga.			_	1	<u>1</u>	1		1

Channel Nuts


	Size and Part Number						
Thread Size	With Spring	Without Spring	Twirl Nut				
1/4"-20	N224	N224WO	TN224				
3/8"-16	N228	N228WO	TN228				
1/2"-13	N225	N225WO	TN225				
5/8"-11	N255	N255WO					
3/4"-10	N275	N275WO					

Available Finishes: Electro-Galvanized

Combo Nut Washers

Part Number	Thread Size
NW524	1/4"-20
NW528	3/8"-16
NW525	1/2"-13

Copper Tubing Clamps DURA-COPPER™

Part No.	Nom Tubing		Mat'l Ga.
B2026DCU	1/2"	(15)	16
B2008DCU	3/4"	(20)	16
B2030DCU	1"	(25)	14
B2032DCU	11/4"	(32)	14
B2011DCU	11/2"	(40)	14
B2038DCU	2"	(50)	12
B2042DCU	21/2"	(60)	12
B2046DCU	3"	(80)	12
B2050DCU	31/2"	(90)	12
B2054DCU	4"	(100)	11

Schedule 40 Pipe Clamps

Part No.	Nom Pipe		Mat'l Ga.
B2001	3/8"	(10)	16
B2008	1/2"	(15)	16
B2009	3/4"	(20)	14
B2010	1"	(25)	14
B2011	1 ¹ /4"	(32)	14
B2012	1 ¹ /2"	(40)	12
B2013	2"	(50)	12
B2014	21/2"	(60)	12
B2015	3"	(80)	12
B2016	31/2"	(90)	11
B2017	4"	(100)	11
B2018	41/2"	(115)	11
B2019	5"	(125)	11
B2020	6"	(150)	11
B2021	7"	(175)	11
B2022	8"	(200)	11

Available Finishes: Electro-Galvanized, Aluminum, Stainless, DURA-COPPER Painted, Hot-Dip Galvanized and PVC coated. Nut and bolts are included with all two-piece clamps.

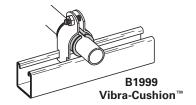
** Add "PA" to Part No. for Pre-assembled

Below are some basic clamp and cushions to be used with a strut system. For the industry's most complete line of strut and strut fittings, refer to B-Line series Strut Systems catalog.

Part	0.0	. Size	Mat'l
No.		de Dia.)	Ga.
B2023	1/4"	(6.3)	16
B2024	3/8"	(9.5)	16
B2025	1/2"	(12.7)	16
B2026	5/8"	(15.9)	16
B2027	3/4"	(19.0)	16
B2028	7/8"	(22.2)	16
B2029	1"	(25.4)	14
B2030	1 ¹ /8"	(28.6)	14
B2031	1 ¹ /4"	(31.7)	14
B2032	13/8"	(34.9)	14
B2004	11/2"	(38.1)	14
B2011	15/8"	(41.3)	14
B2005	13/4"	(44.4)	12
B2036	17/8"	(47.6)	12
B2037	2"	(50.8)	12
B2038	21/8"	(54.0)	12
B2039	21/4"	(57.1)	12
B2013	23/8"	(60.3)	12
B2041	21/2"	(63.5)	12
B2042	25/8"	(66.7)	12
B2043	23/4"	(69.8)	12
B2014	27/8"	(73.0)	12
B2045	3"	(76.2)	12
B2046	31/8"	(79.4)	12
B2047	31/4"	(82.5)	12
B2048	33/8"	(85.7)	12
B2015	31/2"	(88.9)	12
B2050	35/8"	(92.1)	11
B2051	33/4"	(95.2)	11
B2016	4"	(101.6)	11
B2054	41/8"	(104.8)	11
B2055	41/4"	(107.9)	11
B2056	43/8"	(111.1)	11
B2017	41/2"	(114.3)	11
B2058	4 ⁵ /8"	(117.5)	11
B2059	4 ³ / ₄ "	(120.6)	11
B2060	4 ⁷ /8"	(123.8)	11
B2061	5"	(127.0)	11
B2062	5 ¹ /8"	(130.2)	11
B2063	5 ¹ /4"	(133.3)	11
B2064	53/8"	(136.5)	11

BVT & BVP Series Vibra-Clamp™

For Copper Tubing & OD Sizes


Catalog No.		r & Steel oing Size	Non Coppe	
BVT025	1/4"	(6.3)	-	_
BVT037	3/8"	(9.5)	1/4"	(6)
BVT050	1/2"	(12.7)	3/8"	(10)
BVT062	5/8"	(15.9)	1/2"	(15)
BVT075	3/4"	(19.0)	5/8"	(17)
BVT087	7/8"	(22.2)	3/4"	(20)
BVT100	1"	(25.4)	-	-
BVT112	1 ¹ /8"	(28.6)	1"	(25)
BVT125	11/4"	(31.7)	_	_
BVT137	13/8"	(34.9)	1 ¹ /4"	(32)
BVT150	11/2"	(38.1)	_	_
BVT162	1 ⁵ /8"	(41.3)	11/2"	(40)
BVT175	13/4"	(44.4)	_	_
BVT187	1 ⁷ /8"	(47.6)	_	-
BVT200	2"	(50.8)	-	-
BVT212	21/8"	(54.0)	2"	(50)
BVT225	21/4"	(57.1)	-	-
BVT250	21/2"	(63.5)	-	_
BVT262	2 ⁵ /8"	(66.7)	21/2"	(65)
BVT300	3"	(76.2)	-	-
BVT312	31/8"	(79.4)	3"	(80)
BVT362	3 ⁵ /8"	(92.1)	31/2"	(90)
BVT400	4"	(101.6)	-	-
BVT412	41/8"	(104.8)	4"	(100)
BVT612	61/8"	(155.6)	6"	(150)

Available for tubing and pipe sizes ¹/4" to 6", OD sizes ¹/4" to 6⁵/s". Easy one tool installation, dampens vibration and noise, secures tubing firmly, and protects against galvanic reaction.

Stainless Steel available

For Pipe Sizes

Catalog No.	Nom Pipe	
BVP025	1/4"	(6)
BVP037	3/8"	(10)
BVP050	1/2"	(15)
BVP075	3/4"	(20)
BVP100	1"	(25)
BVP125	11/4"	(32)
BVP150	11/2"	(40)
BVP200	2"	(50)
BVP250	21/2"	(65)
BVP300	3"	(80)
BVP350	31/2"	(90)
BVP400	4"	(100)
BVP500	5"	(125)
BVP600	6"	(150)

- Inhibits Galvanic Reaction
- Reduces Sound & Vibration
- Used on refrigeration, HVAC, copper tubing, glass pipes & hydraulic lines Available in 20 Ft. rolls.

For Rigid Conduit or Iron Pipe

	ominal Length of Size Vibra-Cushion		Use Clamp No.	
3/8"	(10)	21/8"	(54.0)	B2002
1/2"	(15)	25/8"	(66.7)	B2009
3/4"	(20)	31/4"	(82.5)	B2031
1"	(25)	41/8"	(104.8)	B2004
11/4"	(32)	5 ³ /16"	(131.8)	B2012
11/2"	(40)	5 ¹⁵ /16"	(150.8)	B2038
2"	(50)	71/2"	(190.5)	B2042
21/2"	(65)	9"	(228.6)	B2046
3"	(80)	11"	(279.4)	B2051
31/2"	(90)	121/2"	(317.5)	B2055
4"	(100)	14 ¹ /2"	(368.3)	B2059
5"	(125)	17 ⁷ /16"	(442.9)	B2067
6"	(150)	203/4"	(527.0)	B2116

For Thinwall (EMT) Conduit

Nom Siz		Lengt Vibra-C		Use Clamp No.
3/8"	(10)	1 ¹³ /16"	(46.0)	B2027
1/2"	(15)	23/16"	(58.7)	B2002
3/4"	(20)	2 ⁷ /8"	(73.0)	B2003
1"	(25)	35/8"	(92.1)	B2032
11/4"	(32)	43/8"	(120.6)	B2036
11/2"	(40)	5 ⁷ /16"	(138.1)	B2012
2"	(50)	6 ⁷ /8"	(174.6)	B2013

For Thinwall (EMT) Conduit

			,	
Nom Siz		Lengt Vibra-C		Use Clamp No.
1/4"	(6)	1 ³ /16"	(30.2)	B2026
3/8"	(10)	1 ⁹ /16"	(39.7)	B2027
1/2"	(15)	1 ⁷ /8"	(47.6)	B2028
5/8"	(17)	2 ⁵ /16"	(58.7)	B2029
3/4"	(20)	23/4"	(69.8)	B2030
1"	(25)	31/2"	(88.9)	B2032
11/4"	(32)	4 ⁵ /16"	(109.5)	B2011
11/2"	(40)	51/8"	(130.2)	B2036
2"	(50)	6 ¹¹ /16"	(169.9)	B2013
21/2"	(65)	81/4"	(209.5)	B2014
3"	(80)	9 ¹³ /16"	(249.2)	B2048
31/2"	(90)	11 ³ /8"	(288.9)	B2052
4"	(100)	12 ¹⁵ /16"	(328.6)	B2056
5"	(125)	61/8"	(409.6)	B2064
6"	(150)	19 ¹ /4"	(488.9)	B2112
8"	(200)	25 ¹ /2"	(647.7)	B2128

All dimensions in charts and on drawings are in inches. Dimensions shown in parentheses are in millimeters unless otherwise specified.

51/2"

(139.7)

11

B2065

B3373 - Standard Riser Clamp

B3373F - Felt Lined Standard Riser Clamp for Copper Tubing

B3373C - PVC Coated Standard Riser Clamp

Size Range: (B3373) 1/2" (15mm) thru 30" (760mm) pipe (B3373F) 1/2" (15mm) thru 21/2" (65mm) copper tubing

(B3373C) 1/2" (15mm) thru 6" (150mm) pipe

Material: Steel

Insulation Material: (B3373F) 1/8" (3.2mm) thick felt. Function: Used for supporting vertical piping.

Approvals: Underwriters Laboratories Listed in the USA (UL), Canada (cUL)

3/4" (20mm) - 8" (200mm).

Factory Mutual Engineering Approved (FM) for plain and electro-Galvanized zinc, 3/4" (20mm) thru 8" (200mm). Conforms to Federal Specification WW-H-171E & A-A-1192A, Type 8 and Manufacturers Standardization Society ANSIMISS SP-69 & SP-58, Type 8.

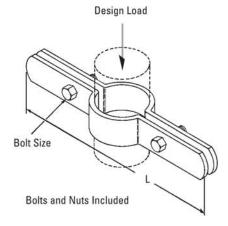
Maximum Temperature: 650°F (343°C)

Finish: Plain. Contact customer service for alternative finishes and materials.

Order By:

(B3373 and B3373C) pipe size and finish.

B3373F is available for Iron Pipe Size, consult factory.



Manufacturer Substitution

Notes: For ductile iron (D.I.) pipe use part number B3373DI-pipe size. Contact B-Line Engineering for more information.

	Pipe	Pipe Size		L		Desig	n Load	Approx. Wt./100		
Part No.	in.	(mm)	in.	(mm)	Bolt Size	Lbs.	(kN)	Lbs.	(kg)	
B3373-1/2	1/2"	(15)	9"	(228.6)	³ /8"-16 x 1 ¹ /4"	255	(1.13)	101	(45.9)	
B3373- ³ /4	3/4"	(20)	91/4"	(234.9)	3/8"-16 x 1 ¹ /4"	255	(1.13)	105	(47.7)	
B3373-1	1"	(25)	99/16"	(242.9)	³ /8"-16 x 1 ¹ /4"	255	(1.13)	109	(49.4)	
B3373-1 ¹ /4	11/4"	(32)	10"	(254.0)	3/8"-16 x 1 ¹ /4"	255	(1.13)	112	(50.9)	
B3373-11/2	11/2"	(40)	101/4"	(260.3)	3/8"-16 x 1 ¹ /2"	255	(1.13)	113	(51.1)	
B3373-2	2"	(50)	103/4"	(273.0)	3/8"-16 x 1 ¹ /2"	255	(1.13)	165	(75.0)	
B3373-21/2	21/2"	(65)	111/4"	(285.7)	3/8"-16 x 1 ¹ /2"	390	(1.73)	180	(81.6)	
B3373-3	3"	(80)	1115/16"	(303.2)	3/8"-16 x 1 ¹ /2"	530	(2.35)	195	(88.4)	
B3373-31/2	31/2"	(90)	123/8"	(314.3)	1/2"-13 x 1 ³ /4"	670	(2.98)	217	(98.5)	
B3373-4	4"	(100)	127/8"	(327.0)	1/2"-13 x 1 ³ /4"	810	(3.60)	228	(103.5)	
B3373-5	5"	(125)	14"	(355.6)	1/2"-13 x 13/4"	1160	(5.16)	480	(217.7)	
B3373-6	6"	(150)	153/16"	(385.8)	¹ /2"-13 x 2"	1570	(6.98)	526	(238.6)	
B3373-8	8"	(200)	173/4"	(450.8)	5/8"-11 x 2 ¹ /2"	2500	(11.12)	957	(434.1)	
B3373-10	10"	(250)	197/16"	(493.7)	5/8"-11 x 2 ¹ /2"	2500	(11.12)	1101	(499.4)	
B3373-12	12"	(300)	2111/16"	(550.9)	5/8"-11 x 3"	2700	(12.01)	1622	(735.7)	
B3373-14	14"	(350)	239/16"	(598.5)	⁵ /8"-11 x 3"	2700	(12.01)	1732	(785.6)	
B3373-16	16"	(400)	263/8"	(669.9)	3/4"-10 x 3 ¹ /4"	2900	(12.90)	2959	(1342.2)	
B3373-18	18"	(450)	287/8"	(733.4)	3/4"-10 x 3 ¹ /4"	2900	(12.90)	3235	(1467.4)	
B3373-20	20"	(500)	307/8"	(784.2)	3/4"-10 x 3 ¹ /2"	2900	(12.90)	3568	(1618.4)	
B3373-24	24"	(600)	347/8"	(885.8)	3/4"-10 x 3 ¹ /2"	2900	(12.90)	4064	(1843.3)	
B3373-30	30"	(750)	403/4"	(1035.0)	7/8"-9 x 3 ¹ /2"	2900	(12.90)	6016	(2728.8)	

TL Thread Size

Specify Length

B3205 - Threaded Rod (right-hand threads - both ends) B3205L - Threaded Rod (right & left hand threads)

Size Range: 3/8"-16 thru 3"-4 rod

Material: Steel

Function: Recommended for use as a hanger support in hanger assemblies. Rod is threaded on both ends with right hand threads of the length shown. Also available with left and right hand threads - specify Fig. B3205L when ordering.

Maximum Temperature: 750°F (399°C)

Finish: Plain. Contact customer service for alternative finishes and materials.

Order By: Part number, rod size, length and finish

		Star	ndard	Design Load				
	Thread Size	Thread L	ength TL	650°F	(343°C)	750°F (399°C)		
Part No.	Α	in.	(mm)	Lbs.	(kN)	Lbs. (kN)		
B3205- ³ /8 x 'L'	³ /8"-16	21/2"	(63.5)	730	(3.25)	572 (2.54)		
B3205-1/2 x 'L'	1/2"-13	21/2"	(63.5)	1350	(6.00)	1057 (4.70)		
B3205-5/8 x 'L'	⁵ /8"-11	21/2"	(63.5)	2160	(9.61)	1692 (7.52)		
B3205-3/4 x 'L'	3/4"-10	3"	(76.2)	3230	(14.37)	2530 (11.25)		
B3205- ⁷ /8 x 'L'	7/8"-9	31/2"	(88.9)	4480	(19.93)	3508 (15.60)		
B3205-1 x 'L'	1"-8	4"	(101.6)	5900	(26.24)	4620 (20.55)		
B3205-1 ¹ /8 x 'L'	1 ¹ /8"-7	41/2"	(114.3)	7450	(33.14)	5830 (25.93)		
B3205-11/4 x 'L'	1 ¹ /4"-7	5"	(127.0)	9500	(42.25)	7440 (33.09)		
B3205-1 ¹ / ₂ x 'L'	11/2"-6	6"	(152.4)	13800	(61.38)	10807 (48.07)		
B3205-13/4 x 'L'	1 ³ /4"-5	7"	(177.8)	18600	(82.73)	14566 (64.79)		
B3205-2 x 'L'	2"-41/2	8"	(203.2)	24600	(109.42)	19625 (87.29)		
B3205-21/4 x 'L'	21/4"-41/2	9"	(228.6)	32300	(143.67)	25295 (112.51)		
B3205-2 ¹ / ₂ x 'L'	21/2"-4	10"	(254.0)	39800	(177.03)	31169 (138.64)		
B3205-23/4 x 'L'	23/4"-4	11"	(279.4)	49400	(219.73)	38687 (172.08)		
B3205-3 x 'L'	3"-4	12"	(304.8)	60100	(267.32)	47066 (209.35)		

ATR - All Threaded Rod 120" (3.05m) Lengths Fig. 99 - All Threaded Rod Cut To Length

Size Range: 3/8"-16 thru 11/2"-6 rod in 120" (3.05m) lengths or cut to length

Material: Steel

Maximum Temperature: 750°F (399°C)

Finish: Plain. Contact customer service for alternative finishes and materials.

Order By: Part number, rod diameter and finish

Part No Size x Length		Threads	Recomme	nded Load	Approx.	Approx. Wt./100 Ft.		
ATR	Fig.99	Per Inch	Lbs.	(kN)	Lbs.	(kg)		
ATR 1/4" x 120	99- ¹ /4" x length	20	240	(1.07)	12	(5.44)		
ATR ³ /8" x 120	99- ³ /8" x length	16	730	(3.24)	29	(13.15)		
ATR ¹ /2" x 120	99- ¹ /2" x length	13	1350	(6.00)	53	(24.04)		
ATR ⁵ /8" x 120	99- ⁵ /8" x length	11	2160	(9.60)	89	(40.37)		
ATR ³ /4" x 120	99- ³ /4" x length	10	3230	(14.37)	123	(55.79)		
ATR ⁷ /8" x 120	99- ⁷ /8" x length	9	4480	(19.93)	170	(77.11)		
ATR 1" x 120	99-1" x length	8	5900	(26.24)	225	(102.06)		
ATR 1 ¹ /8" x 120	99-1 ¹ /8" x length	7	7450	(33.14)	280	(127.01)		
ATR 1 ¹ / ₄ " x 120	99-1 ¹ /4" x length	7	9500	(42.25)	351	(159.21)		
ATR 11/2" x 120	99-1 ¹ /2" x length	6	13800	(61.38)	510	(231.33)		

All dimensions in charts and on drawings are in inches. Dimensions shown in parentheses are in millimeters unless otherwise specified.

OWCB: Zinc plated per speci

The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 16.1.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines.

US: http://submittals.us.hilti.com/PTGVol2/
http://submittals.us.hilti.com/PTGVol2CA/

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or HNATechnicalServices@hilti.com

CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

HDI-P Drop-in Anchor 3.3.12

3.3.12.1 Product description

The HDI-P drop-in anchor is an internally threaded, flush mounted expansion anchor for solid and hollow concrete.

Product features

- Optimized anchor length to allow reliable fastenings in hollow core panels, precast plank and post tensioned slabs
- Shallow drilling enables fast installation
- Lip provides flush installation, consistent anchor depth and easy rod alignment

 Setting tool leaves mark on flange when anchor is set properly to enable inspection and verification of proper expansion

Guide specifications

Expansion anchor shall be flush or shell type and zinc plated in accordance with ASTM B633, SC 1, Type III. Anchors shall be Hilti HDI-P anchors as supplied by Hilti.

Install shell or flush type anchors in holes drilled with Hilti carbide tipped drill bits. Install anchors in accordance with manufacturer's instructions.

3.3.12.1	Product description
3.3.12.2	Material specifications
3.3.12.3	Technical data
3.3.12.4	Installation instructions
3.3.12.5	Ordering information

Listings/Approvals
FM (Factory Mutual) for 3/8-in. model

3.3.12.2 Material specifications

The HDI-P is manufactured from mild carbon steel, which is zinc plated for corrosion protection in accordance with ASTM B633, SC 1, Type III.

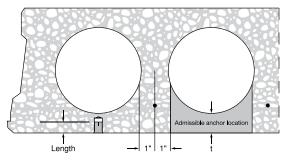

3.3.12.3 Technical data

Table 1 - Hilti HDI-P loads in normal-weight concrete and hollow core concrete panels

			Nom.		Ultimate loads, lb (kN)							Allowable loads, lb (kN) ³							
Nominal anchor	1.6	ength	bit dia.	f' _c = 4,000 p		f'c = 4,000 psi concrete		rete	Hollow core ^{1,2}			$f_{\rm c}$ = 4,000 psi concrete			rete	Hollow core ^{1,2}			
diameter		(mm)	in.	Tens	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	She	ear
1/4	5/8	(15.9)	3/8	1,430	(6.4)	1,870	(8.3)	1,550	(6.9)	2,275	(10.1)	285	(1.3)	375	(1.7)	310	(1.4)	455	(2.0)
3/8	3/4	(19.1)	1/2	1,900	(8.5)	3,000	(13.3)	2,100	(9.3)	4,000	(17.8)	380	(1.7)	600	(2.7)	420	(1.9)	800	(3.6)
1/2	1	(25.4)	5/8	3,000	(13.3)	6,075	(27.0)	3,110	(13.8)	5,495	(24.5)	600	(2.7)	1215	(5.4)	620	(2.8)	1,100	(4.9)

- 1 The Admissible Anchor Location must be established to prevent damage to the prestressed cable during the drilling process. Verify the location and height of the cable with the hollow core plank supplier to confirm Admissible Anchor Location.
- 2 Minimum compressive strength of hollow core panels is 7,000 psi at the time of installation. The minimum thickness "t" is 1-3/8 inches.
- 3 Allowable loads calculated with a 5:1 factor-of-safety.

Figure 1 - Installation of Hilti HDI-P in hollow core concrete

3.3.12.4 Installation instructions

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www. us.hilti.com (US) and www.hilti.ca (Canada). Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

3.3.12.5 Ordering information

HDI-P anchor

Description	Bit diameter	Qty / box
HDI-P 1/4	3/8	100
HDI-P 3/8	1/2	100
HDI-P 1/2	5/8	50

Setting tools for HDI-P anchors

Description

Description
HST-P 1/4 Hand Setting Tool
HST-P 3/8 Hand Setting Tool
HSD-G 3/8 Hand Setting Tool with hand guard
HST-P 1/2 Hand Setting Tool

3.3.12

The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 16.1.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines.

US: http://submittals.us.hilti.com/PTGVol2/
http://submittals.us.hilti.com/PTGVol2CA/

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or HNATechnicalServices@hilti.com

CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

3.3.13 HCI-WF/MD Cast-in Anchor

3.3.13.1	Product description
3.3.13.2	Material specifications
3.3.13.3	Technical data
3.3.13.4	Installation instructions
3.3.13.5	Ordering information

HCI-WF

HCI-MD

Listings/Approvals

ICC-ES (International Code Council) ESR-3713

FM (Factory Mutual)

Pipe Hanger Components for Automatic Sprinkler Systems 3/8 through 3/4 UL LLC

UL 203 Pipe Hanger Equipment for Fire Protection Services 3/8 through 3/4

3.3.13.1 Product description

HCI-WF/MD cast-in anchors are internally threaded cast-in anchor suitable for use with either wood (WF) or metal deck (MD) form work. The HCI-WF and HCI-MD are ideally suited for a variety of rod hanging applications and offers significant time savings over traditional post-installed anchor solutions.

Product features

- Installation performed on top of the formwork. No overhead drilling. No scissor lift rental
- Hexagonal head prevents spinning in concrete
- Anchor bodies are color coded for quick identification
- HCI-WF have large plastic flanges for secure seating to wood form.
 This prevents concrete seepage into the threading.
- HCI-WF have notched nails that snap off easily at the concrete surface after the wood forms are stripped.
- HCI-MD have a protective plastic sleeve that helps to prevent concrete, sprayed-on firestop or sprayed-on insulation from fouling the threading.
- HCI-MD have a robust spring that seats the anchor reliably.

Guide specifications

Manufacturer Substitution

HCI-WF: Concrete anchor shall be carbon steel, cast-in type with single internal thread and a zinc/yellow chromate plating and contained by a plastic flange. Anchor shall have break-off nails for attachment to the surface of wood forms. Anchor will bear the diameter and manufacturer name on its hexagon head. Anchors shall be HCI-WF as supplied by Hilti.

HCI-MD: Concrete anchor shall be carbon steel, cast-in type with single internal thread and a zinc/yellow chromate plating. Anchor shall have a protective plastic sleeve, steel flange with predrilled additional fastening holes and placement spring for attachment to metal deck, anchor is to be secured by clamping the deck between the steel flange and the protective plastic sleeve. Anchor shall bear the diameter and manufacturer name on its hexagon head. Anchors shall be HCI-MD as supplied by Hilti.

3.3.13.2 Material specifications

Component	HCI-WF	HCI-MD
Insert body	Heat treated carbon steel	Heat treated carbon steel
Flange	Engineered plastic	Heat treated carbon steel
Spring	N/A	Carbon steel wire
Plating	Zinc - yellow chromate	Zinc - yellow chromate
Protective sleeve	N/A	Engineered plastic

3.3.13.3 Technical data

Table 1 - Hilti HCI-MD specification table

Setting information	Symbol	Units	Nominal anchor diameter					
Setting information	Symbol	Ullits	3/8	1/2	5/8	3/4		
Insert thread	d	UNC	3/8-16	1/2-13	5/8-11	3/4-10		
Metal hole saw diameter	d _{bit}	in.	7/8	1-3/16	1-3/16	1-1/4		
Height of assembled spring		in.	1-7/8	1-7/8	1-7/8	1-7/8		
Height of assembled spring	h _s	(mm)	(48)	(48)	(48)	(48)		
Minimum throad angagement	0	in.	3/8	1/2	5/8	3/4		
Minimum thread engagement	$\ell_{ ext{th}}$	(mm)	(10)	(13)	(16)	(20)		
Sleeve length	0	in.	3-3/8	3-3/8	3-3/8	3-3/8		
Sleeve length	$\ell_{_{SI}}$	(mm)	(86)	(86)	(86)	(86)		
Longth	ℓ	in.	5-7/16	5-7/16	5-7/16	5-7/16		
Length	ł	(mm)	(138)	(138)	(138)	(138)		
Steel head thickness	+	in.	1/8	1/8	1/8	1/8		
Steel flead trickfless	t _{sh}	(mm)	(3.2)	(3.2)	(3.2)	(3.2)		
Ctaal flangs thiskness		in.	5/64	5/64	5/64	5/64		
Steel flange thickness	t _{sf}	(mm)	(2.0)	(2.0)	(2.0)	(2.0)		
Minimum slab thickness	h	in.		Soo Eiguro	2 1 and 5			
WILLIAM SIAD UNICKNESS	11	(mm)	See Figures 3, 4 and 5					

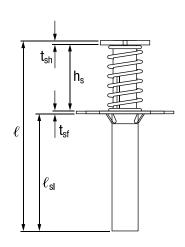


Figure 1 - HCI-MD specifications

Table 2 - Hilti HCI-WF specification table

Setting information	Cumbal	Units	Nominal anchor diameter					
Setting information	Symbol	Ullits	1/4	3/8	1/2	5/8	3/4	
Insert thread	d	UNC	1/4-20	3/8-16	1/2-13	5/8-11	3/4-10	
Minimum throad angagement	0	in.	1/4	3/8	1/2	5/8	3/4	
Minimum thread engagement	$\ell_{ ext{th}}$	(mm)	6	10	13	16	20	
Disable flagger disables	d _{pf}	in.	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	
Plastic flange diameter		(mm)	(38)	(38)	(38)	(38)	(38)	
Digatio flance this knows	t _{pf}	in.	7/64	7/64	7/64	7/64	7/64	
Plastic flange thickness		(mm)	(2.8)	(2.8)	(2.8)	(2.8)	(2.8)	
Longth	l	in.	2	2	2-3/16	2-3/16	2-3/16	
Length	ŧ	(mm)	(51)	(51)	(57)	1-1/2 1- (38) (3 7/64 7/ (2.8) (2 6 2-3/16 2-3 (57) (5 1/8 1 (3.2) (3 7/8 7 (22) (2	(57)	
Steel head thickness	+	in.	1/8	1/8	1/8	1/8	1/8	
Steel flead trickfless	t _{sh}	(mm)	(3.2)	(3.2)	(3.2)	(3.2)	(3.2)	
I continue the section of the section	0	in.	7/8	7/8	7/8	7/8	7/8	
Length of break-off nails	ℓ_{n}	(mm)	(22)	(22)	(22)	(22)	(22)	
Minimum slab thickness	h	in.	4	4	4	4	4	
IVIII III III SIAD UIICKIIESS		(mm)	(102)	(102)	(102)	(102)	(102)	

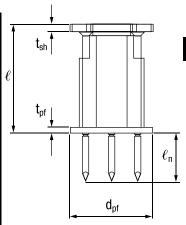


Figure 2 - HCI-WF specifications

3.3.13.3.1 ACI 318 Appendix D design

The technical data contained in this section are Hilti Simplified Design Tables. The load values were developed using the Strength Design parameters and variables of ESR-3713 and the equations within ACI 318-11 Appendix D. For a detailed explanation of the Hilti Simplified Design Tables, refer to section 3.1.8. Data tables from ESR-3713 are not contained in this section, but can be found at www.icc-es.org or at www.us.hilti.com.

3.3.13 HCI-WF/MD Cast-in Anchor

Table 3 - Hilti HCI-WF cast-in insert design strength with concrete/pullout failure in uncracked concrete^{1,2,3,4,5}

Nominal		Tension - φN _n				Shear - φV _n			
anchor internal	Effective embed.	f' = 2,500 psi (17.2 MPa)	f' = 3,000 psi (20.7 MPa)	f' = 4,000 psi (27.6 MPa)	f' = 6,000 psi (41.1 MPa)	f' = 2,500 psi (17.2 MPa)	f' = 3,000 psi (20.7 MPa)	f'_{c} = 4,000 psi (27.6 MPa)	f' = 6,000 psi (41.1 MPa)
diameter	in. (mm)	lb (kN)	lb (kN)						
1/4	1.88	2,695	2,950	3,405	4,175	2,695	2,950	3,405	4,175
and 3/8	(48)	(12.0)	(13.1)	(15.1)	(18.6)	(12.0)	(13.1)	(15.1)	(18.6)
1/2, 5/8	2.06	3,110	3,405	3,930	4,815	3,110	3,405	3,930	4,815
and 3/4	(52)	(13.8)	(15.1)	(17.5)	(21.4)	(13.8)	(15.1)	(17.5)	(21.4)

Table 4 - Hilti HCI-WF cast-in insert design strength with concrete/pullout failure in cracked concrete^{1,2,3,4,5}

Nominal		Tension - φN _n				Shear - φV _n			
anchor	Effective	, c						$f_{c}^{1} = 4,000 \text{ psi}$, c
internal diameter	embed. in. (mm)	(17.2 MPa) lb (kN)	(20.7 MPa) lb (kN)	(27.6 MPa) lb (kN)	(41.1 MPa) lb (kN)	(17.2 MPa) lb (kN)	(20.7 MPa) lb (kN)	(27.6 MPa) lb (kN)	(41.1 MPa) lb (kN)
1/4	1.88	2.155	2.360	2.725	3.340	2.155	2.360	2.725	3.340
and 3/8	(48)	(9.6)	(10.5)	(12.1)	(14.9)	(9.6)	(10.5)	(12.1)	(14.9)
1/2, 5/8	2.06	2,485	2,725	3,145	3,850	2,485	2,725	3,145	3,850
and 3/4	(52)	(11.1)	(12.1)	(14.0)	(17.1)	(11.1)	(12.1)	(14.0)	(17.1)

¹ See section 3.1.8.6 to convert design strength value to ASD value.

² Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

³ Apply spacing, edge distance, and concrete thickness factors in tables 5 to 10 as necessary. Compare to steel rod values in table 13. The lesser of the values is to be used for the design.

⁴ Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: for sand-lightweight, $\lambda_a = 0.85$; for all-lightweight, $\lambda_a = 0.75$

⁵ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by $\alpha_{N,seis} = 0.75$.

Table 5 - Load adjustment factors for 1/4-in. and 3/8-in. diameter Hilti HCI-WF in uncracked concrete^{1,2}

						Edge distar	ice in shear	
				Edge distance			=	Concrete
			Spacing factor	factor in	Spacing factor	Т	to and away	thickness
,	and 3/8-in		in tension	tension⁵	in shear³	toward edge5	from edge ⁵	factor in shear4
unc	uncracked concrete		$f_{_{AN}}$	$f_{_{RN}}$	f_{AV}	f_{\scriptscriptstyleRV}	${f}_{\scriptscriptstyleRV}$	f_{\scriptscriptstyleHV}
	Effective in.		1.88	1.88	1.88	1.88	1.88	1.88
emb	embed. h _{ef} (mm)		(48)	(48)	(48)	(48)	(48)	(48)
ē	1-1/2	(38)	n/a		n/a			n/a
concrete	2	(51)	n/a	0.781	n/a	0.449	0.781	n/a
l e	2-1/2	(64)	n/a	0.913	n/a	0.628	0.913	n/a
\ -	3	(76)	n/a	1.000	n/a	0.826	1.000	n/a
(c _a) /	3-1/2	(89)	n/a		n/a	1.000		0.827
in. (r	4	(102)	n/a		n/a			0.885
ਂ ਲੋ	4-1/2	(114)	n/a		n/a			0.938
dist (h)	5	(127)	n/a		n/a			0.989
e c	5-1/2	(140)	0.989		0.769			1.000
edge	6	(152)	1.000		0.793			
≌	7	(178)			0.842			
<u> </u>	8	(203)			0.891			
J.E	9	(229)			0.940			
Spacing	10	(254)			0.989			
S	12	(305)			1.000			

Table 6 - Load adjustment factors for 1/4-in. and 3/8-in. diameter Hilti HCI-WF in cracked concrete^{1,2}

						Edge distar	ice in shear	
				Edge distance			=	Concrete
			Spacing factor	factor in	Spacing factor	T	to and away	thickness
	and 3/8-in		in tension	tension⁵	in shear³	toward edge5	from edge ⁵	factor in shear4
cra	cracked concrete		f_{AN}	f_{\scriptscriptstyleRN}	f_{\scriptscriptstyleAV}	${f}_{\scriptscriptstyleRV}$	f_{\scriptscriptstyleRV}	f_{\scriptscriptstyleHV}
	Effective in.		1.88	1.88	1.88	1.88	1.88	1.88
emb	embed. h _{ef} (mm)		(48)	(48)	(48)	(48)	(48)	(48)
e	1-1/2	(38)	n/a	0.659	n/a	0.261	0.521	n/a
concrete	2	(51)	n/a	0.781	n/a	0.401	0.781	n/a
onc	2-1/2	(64)	n/a	0.913	n/a	0.561	0.913	n/a
	3	(76)	n/a	1.000	n/a	0.737	1.000	n/a
(mm)	3-1/2	(89)	n/a		n/a	0.929		0.797
nce (in. (r	4	(102)	n/a		n/a	1.000		0.852
a .	4-1/2	(114)	n/a		n/a			0.903
dist (h)	5	(127)	n/a		n/a			0.952
e C	5-1/2	(140)	0.989		0.749			0.999
s) / edge c thickness	6	(152)	1.000		0.772			1.000
)/(hic	7	(178)			0.817			
\sim	8	(203)			0.863			
jiú	9	(229)			0.908			
Spacing	10	(254)			0.953			
S	12	(305)			1.000			

¹ Linear interpolation not permitted.

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI-11 318 Appendix D (or CSAA23.3-04 (R2010) AnnexD).

³ Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{\text{AV}} = f_{\text{AN}}$.

⁴ Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

⁵ For torqued anchors, the minimum edge distance is same as the minimum spacing distance for torqued anchors.

Shaded cells are for anchors that will remain un-torqued.

Table 7 - Load adjustment factors for 1/2-in. and 5/8-in. diameter Hilti HCI-WF in uncracked concrete^{1,2}

						Edge distar	nce in shear	
				Edge distance			II	Concrete
1/2-in.	., 5/8-in. an	nd 3/4-in.	Spacing factor	factor in	Spacing factor	T	to and away	thickness
	HCI-WF		in tension	tension⁵	in shear³	toward edge⁵	from edge ⁵	factor in shear4
unc	uncracked concrete		f_{AN}	${f}_{\scriptscriptstyle{RN}}$	$f_{_{AV}}$	${f}_{\scriptscriptstyleRV}$	f_{\scriptscriptstyleRV}	f_{\scriptscriptstyleHV}
	Effective in.		2.06	2.06	2.06	2.06	2.06	2.06
emb	embed. h _{ef} (mm)		(52)	(52)	(52)	(52)	(52)	(52)
	1-1/2	(38)	n/a	0.628	n/a	0.260	0.521	n/a
concrete	2	(51)	n/a	0.736	n/a	0.401	0.736	n/a
وّ	2-1/2	(64)	n/a	0.852	n/a	0.560	0.852	n/a
9	3	(76)	n/a	0.976	n/a	0.737	0.976	n/a
<u> </u>	3-1/2	(89)	n/a	1.000	n/a	0.928	1.000	0.797
(mm)	4	(102)	n/a		n/a	1.000		0.852
i Ge	4-1/2	(114)	n/a		n/a			0.903
star (ı	5	(127)	n/a		n/a			0.952
s) / edge distance (c_a) thickness (h) - in. (mm	5-1/2	(140)	n/a		n/a			0.999
age Jes	5-3/4	(146)	0.965		0.761			1.000
호 울	6	(152)	0.985		0.772			
(s) /	7	(178)	1.000		0.817			
و	8	(203)			0.863			
SC.	9	(229)			0.908			
Spacing	10	(254)			0.953			
	12	(305)			1.000			

Table 8 - Load adjustment factors for 1/2-in. and 5/8-in. diameter Hilti HCI-WF in cracked concrete^{1,2}

						Edge distar	ice in shear	
				Edge distance			II	Concrete
1/2-in.	, 5/8-in. an	d 3/4-in.	Spacing factor	factor in	Spacing factor		to and away	thickness
	HCI-WF		in tension	tension⁵	in shear ³	toward edge⁵	from edge ⁵	factor in shear4
cra	acked cond	crete	f_{AN}	${f}_{\scriptscriptstyle{RN}}$	f_{AV}	f_{\scriptscriptstyleRV}	f_{\scriptscriptstyleRV}	f_{\scriptscriptstyleHV}
	ective	in.	2.06	2.06	2.06	2.06	2.06	2.06
emb	embed. h _{ef} (mm)		(52)	(52)	(52)	(52)	(52)	(52)
	1-1/2	(38)	n/a	0.628	n/a	0.233	0.465	n/a
concrete	2	(51)	n/a	0.736	n/a	0.358	0.716	n/a
JC	2-1/2	(64)	n/a	0.852	n/a	0.500	0.852	n/a
Ö	3	(76)	n/a	0.976	n/a	0.658	0.976	n/a
(c _a) /	3-1/2	(89)	n/a	1.000	n/a	0.829	1.000	0.767
distance (c _a) s (h) - in. (mm	4	(102)	n/a		n/a	1.000		0.820
in.	4-1/2	(114)	n/a		n/a			0.870
listaı (h) -	5	(127)	n/a		n/a			0.917
dis s (F	5-1/2	(140)	n/a		n/a			0.961
s) / edge c thickness	5-3/4	(146)	0.965		0.742			0.983
ckr	6	(152)	0.985		0.752			1.000
(s) thi	7	(178)	1.000		0.794			
) g(8	(203)			0.836			
acir	9	(229)			0.878			
Spacing (s) th	10	(254)			0.920			
	12	(305)			1.000			

¹ Linear interpolation not permitted.

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI-11 318 Appendix D (or CSAA23.3-04 (R2010) AnnexD).

³ Spacing factor reduction in shear, $f_{_{\mathrm{AV}}}$ assumes an influence of a nearby edge. If no edge exists, then $f_{_{\mathrm{AV}}} = f_{_{\mathrm{AN}}}$

⁴ Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

⁵ For torqued anchors, the minimum edge distance is same as the minimum spacing distance for torqued anchors.

Shaded cells are for anchors that will remain un-torqued.

Table 9 - Load adjustment factors for 3/4-in. diameter Hilti HCI-WF in uncracked concrete^{1,2}

						Edge distar	ice in shear	
				Edge distance			II	Concrete
			Spacing factor	factor in	Spacing factor	工	to and away	thickness
3	/4-in. HCI-	WF	in tension	tension⁵	in shear³	toward edge⁵	from edge ⁵	factor in shear4
unc	racked cor	ncrete	$f_{_{AN}}$	f_{\scriptscriptstyleRN}	$f_{_{AV}}$	f_{\scriptscriptstyleRV}	${f}_{\scriptscriptstyleRV}$	f_{\scriptscriptstyleHV}
	ective	in.	2.06	2.06	2.06	2.06	2.06	2.06
emb	embed. h _{ef} (mm)		(52)	(52)	(52)	(52)	(52)	(52)
	1-1/2	(38)	n/a	0.628	n/a	0.260	0.521	n/a
e).	2	(51)	n/a	0.736	n/a	0.401	0.736	n/a
concrete	2-1/2	(64)	n/a	0.852	n/a	0.560	0.852	n/a
ouc	3	(76)	n/a	0.976	n/a	0.737	0.976	n/a
	3-1/2	(89)	n/a	1.000	n/a	0.928	1.000	0.797
Co HI	4	(102)	n/a		n/a	1.000		0.852
nce (c _a) / in. (mm)	4-1/2	(114)	n/a		n/a			0.903
anc - ir	5	(127)	n/a		n/a			0.952
distance (c _a) s (h) - in. (mm	5-1/2	(140)	n/a		n/a			0.999
e c	6	(152)	n/a		n/a			
edge	6-1/4	(159)	1.000		0.783			
∕ .⊆	6-1/2	(165)			0.795			
3 (S)	7	(178)			0.817			
i,	8	(203)			0.863			
Spacing (s)	9	(229)			0.908			
S	10	(254)			0.953			
	12	(305)			1.000			

Table 10 - Load adjustment factors for 3/4-in. diameter Hilti HCI-WF in cracked concrete^{1,2}

						Edge distar	nce in shear	
				Edge distance			II	Concrete
			Spacing factor	factor in	Spacing factor		to and away	thickness
3,	/4-in. HCI-	WF	in tension	tension⁵	in shear³	toward edge5	from edge⁵	factor in shear4
cra	acked cond	crete	f_{AN}	${f}_{\scriptscriptstyle{RN}}$	f_{AV}	f_{\scriptscriptstyleRV}	f_{\scriptscriptstyleRV}	f_{\scriptscriptstyleHV}
	Effective in.		2.06	2.06	2.06	2.06	2.06	2.06
emb	embed. h _{ef} (mm)		(52)	(52)	(52)	(52)	(52)	(52)
	1-1/2	(38)	n/a	0.628	n/a	0.233	0.465	n/a
е	2	(51)	n/a	0.736	n/a	0.358	0.716	n/a
concrete	2-1/2	(64)	n/a	0.852	n/a	0.500	0.852	n/a
onc	3	(76)	n/a	0.976	n/a	0.658	0.976	n/a
	3-1/2	(89)	n/a	1.000	n/a	0.829	1.000	0.767
ance (c _a) / - in. (mm)	4	(102)	n/a		n/a	1.000		0.820
Эе (r	4-1/2	(114)	n/a		n/a			0.870
anc - ir	5	(127)	n/a		n/a			0.917
s) / edge distance (cූ) thickness (h) - in. (mm	5-1/2	(140)	n/a		n/a			0.961
ge C	6	(152)	n/a		n/a			1.000
edge	6-1/4	(159)	1.000		0.763			
)/e	6-1/2	(165)			0.773			
	7	(178)			0.794			
ing	8	(203)			0.836			
Spacing	9	(229)			0.878			
S	10	(254)			0.920			
	12	(305)			1.000			

¹ Linear interpolation not permitted.

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI-11 318 Appendix D (or CSAA23.3-04 (R2010) AnnexD).

³ Spacing factor reduction in shear, $f_{_{\mathrm{AN'}}}$ assumes an influence of a nearby edge. If no edge exists, then $f_{_{\mathrm{AN}}} = f_{_{\mathrm{AN}}}$

⁴ Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

⁵ For torqued anchors, the minimum edge distance is same as the minimum spacing distance for torqued anchors.

Shaded cells are for anchors that will remain un-torqued.

Table 11 - Hilti HCI-MD design strength in the soffit of uncracked lightweight concrete over metal deck (B profile)1,2,3,4,5,6,7

			Installation i	n lower flute		Installation in upper flute				
	Nominal	Tension - φN _n		Shear	- φV _n	Tensio	n - фN _n	Shear - φV _n		
Anchor	embed.	$f_{c}^{1} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$	$f_{c}^{1} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{+} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f'_{c} = 4,000 \text{ psi}$	
diameter	depth	(20.7 MPa)	(27.6 MPa)	(20.7 MPa)	(27.6 MPa)	(20.7 MPa)	(27.6 MPa)	(20.7 MPa)	(27.6 MPa)	
in. (mm)	in. (mm)	lb (kN)	lb (kN)							
2 /9	2-1/16	615	710	690	690	2,130	2,460	1,725	1,725	
3/8	(52)	(2.7)	(3.2)	(3.1)	(3.1)	(9.5)	(10.9)	(7.7)	(7.7)	
1/2	2-1/16	615	710	735	735	2,130	2,460	1,860	1,860	
1/2	(52)	(2.7)	(3.2)	(3.3)	(3.3)	(9.5)	(10.9)	(8.3)	(8.3)	
5/8	2-1/16	615	710	735	735	2,130	2,460	1,860	1,860	
5/6	(52)	(2.7)	(3.2)	(3.3)	(3.3)	(9.5)	(10.9)	(8.3)	(8.3)	
2/4	2-1/16	615	710	735	735	2,130	2,460	4,220	4,220	
3/4	(52)	(2.7)	(3.2)	(3.3)	(3.3)	(9.5)	(10.9)	(18.8)	(18.8)	

Table 12 - Hilti HCI-MD design strength in the soffit of cracked lightweight concrete over metal deck (B profile)1,2,3,4,5,6,7

			Installation i	n lower flute			Installation i	n upper flute	
	Nominal	Tensio	n - φN _n	Shear - φV _n		Tension - φN _n		Shear	' - φV _n
Anchor	embed.	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{+} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$
diameter	depth	(20.7 MPa)	(27.6 MPa)						
in. (mm)	in. (mm)	lb (kN)							
3/8	2-1/16	490	565	690	690	2,130	2,460	1,725	1,725
3/0	(52)	(2.2)	(2.5)	(3.1)	(3.1)	(9.5)	(10.9)	(7.7)	(7.7)
1/2	2-1/16	490	565	735	735	2,130	2,460	1,860	1,860
1/2	(52)	(2.2)	(2.5)	(3.3)	(3.3)	(9.5)	(10.9)	(8.3)	(8.3)
5/8	2-1/16	490	565	735	735	2,130	2,460	1,860	1,860
5/6	(52)	(2.2)	(2.5)	(3.3)	(3.3)	(9.5)	(10.9)	(8.3)	(8.3)
2/4	2-1/16	490	565	735	735	2,130	2,460	4,220	4,220
3/4	(52)	(2.2)	(2.5)	(3.3)	(3.3)	(9.5)	(10.9)	(18.8)	(18.8)

- 1 See section 3.1.8.6 to convert design strength value to ASD value.
- 2 Linear interpolation between concrete compressive strengths is not permitted.
- 3 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).
- 4 Tabular values are lightweight concrete and no additional reduction factor is needed.
- 5 No additional reduction factors for spacing or edge distance need to be applied.
- 6 Comparison of the tabular values to the steel strength is not necessary. Tabular values control.
- 7 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by α_{N,seis} = 0.75.
 - See section 3.1.8.7 for additional information on seismic applications.

Figure 3 - Installation of Hilti HCI-MD in the soffit

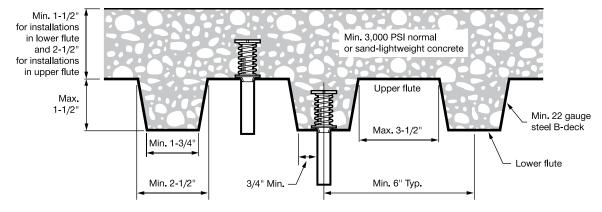


Table 13 - Hilti HCI-MD design strength in the soffit of uncracked lightweight concrete over metal deck (W profile with 4-1/2" width)1,2,3,4,5,6,7

			Installation i	n lower flute		Installation in upper flute				
	Nominal	Tension - φN _n		Shear	· - фV _п	Tensio	n - φN _n	Shear - φV _n		
Anchor	embed.	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{+} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$	
diameter	depth	(20.7 MPa)	(27.6 MPa)							
in. (mm)	in. (mm)	lb (kN)								
2 /0	2-1/16	1,490	1,720	920	920	2,660	3,070	1,725	1,725	
3/8	(52)	(6.6)	(7.7)	(4.1)	(4.1)	(11.8)	(13.7)	(7.7)	(7.7)	
1 /0	2-1/16	1,490	1,720	995	995	2,660	3,070	1,860	1,860	
1/2	(52)	(6.6)	(7.7)	(4.4)	(4.4)	(11.8)	(13.7)	(8.3)	(8.3)	
E /0	2-1/16	1,490	1,720	995	995	2,660	3,070	1,860	1,860	
5/8	(52)	(6.6)	(7.7)	(4.4)	(4.4)	(11.8)	(13.7)	(8.3)	(8.3)	
0./4	2-1/16	1,490	1,720	1,395	1,395	2,660	3,070	4,220	4,220	
3/4	(52)	(6.6)	(7.7)	(6.2)	(6.2)	(11.8)	(13.7)	(18.8)	(18.8)	

Table 14 - Hilti HCI-MD design strength in the soffit of cracked lightweight concrete over metal deck (W profile with 4-1/2" width)^{1,2,3,4,5,6,7}

			Installation i	n lower flute			Installation i	n upper flute	
	Nominal	Tension - φN _n		Shear - φV _n		Tension - φN _n		Shear - φV _n	
Anchor	embed.	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{+} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{+} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$
diameter	depth	(20.7 MPa)	(27.6 MPa)						
in. (mm)	in. (mm)	lb (kN)							
3/8	2-1/16	1,190	1,375	920	920	2,130	2,460	1,725	1,725
3/0	(52)	(5.3)	(6.1)	(4.1)	(4.1)	(9.5)	(10.9)	(7.7)	(7.7)
1/2	2-1/16	1,190	1,375	995	995	2,130	2,460	1,860	1,860
1/2	(52)	(5.3)	(6.1)	(4.4)	(4.4)	(9.5)	(10.9)	(8.3)	(8.3)
E /O	2-1/16	1,190	1,375	995	995	2,130	2,460	1,860	1,860
5/8	(52)	(5.3)	(6.1)	(4.4)	(4.4)	(9.5)	(10.9)	(8.3)	(8.3)
2/4	2-1/16	1,190	1,375	1,395	1,395	2,130	2,460	4,220	4,220
3/4	(52)	(5.3)	(6.1)	(6.2)	(6.2)	(9.5)	(10.9)	(18.8)	(18.8)

- 1 See section 3.1.8.6 to convert design strength value to ASD value.
- 2 Linear interpolation between concrete compressive strengths is not permitted.
- 3 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).
- 4 Tabular values are lightweight concrete and no additional reduction factor is needed.
- 5 No additional reduction factors for spacing or edge distance need to be applied.
- 6 Comparison of the tabular values to the steel strength is not necessary. Tabular values control.
- 7 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by α_{N,seis} = 0.75.

See section 3.1.8.7 for additional information on seismic applications.

Figure 4 - Installation of Hilti HCI-MD in the soffit of concrete over metal deck floor and roof assemblies

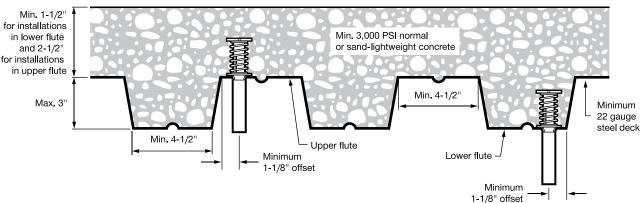


Table 15- Hilti HCI-MD design strength in the soffit of uncracked lightweight concrete over metal deck (W profile with 3-7/8" width)^{1,2,3,4,5,6,7}

			Installation i	n lower flute		Installation in upper flute				
	Nominal	Tension - φN _n		Shear	Shear - φV _n		n - фN _n	Shear - φV _n		
Anchor	embed.	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{+} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{+} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{+} = 4,000 \text{ psi}$	$f_{c}^{+} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$	
diameter	depth	(20.7 MPa)	(27.6 MPa)							
in. (mm)	in. (mm)	lb (kN)								
2 /0	2-1/16	1,300	1,500	920	920	2,660	3,070	1,725	1,725	
3/8	(52)	(5.8)	(6.7)	(4.1)	(4.1)	(11.8)	(13.7)	(7.7)	(7.7)	
1/2	2-1/16	1,300	1,500	995	995	2,660	3,070	1,860	1,860	
1/2	(52)	(5.8)	(6.7)	(4.4)	(4.4)	(11.8)	(13.7)	(8.3)	(8.3)	
F /0	2-1/16	1,300	1,500	995	995	2,660	3,070	1,860	1,860	
5/8	(52)	(5.8)	(6.7)	(4.4)	(4.4)	(11.8)	(13.7)	(8.3)	(8.3)	
2/4	2-1/16	1,300	1,500	995	995	2,660	3,070	4,220	4,220	
3/4	(52)	(5.8)	(6.7)	(4.4)	(4.4)	(11.8)	(13.7)	(18.8)	(18.8)	

Table 16- Hilti HCI-MD design strength in the soffit of cracked lightweight concrete over metal deck (W profile with 3-7/8" width)^{1,2,3,4,5,6,7}

			Installation i	n lower flute		Installation in upper flute			
	Nominal	Tension - φN _n		Shear	Shear - φV _n		n - φN _n	Shear - φV _n	
Anchor	embed.	$f'_{c} = 3,000 \text{ psi}$	$f_{c}^{+} = 4,000 \text{ psi}$	$f'_{c} = 3,000 \text{ psi}$	$f_{c}^{1} = 4,000 \text{ psi}$	f'_{c} = 3,000 psi	$f_{c}^{1} = 4,000 \text{ psi}$	f'_{c} = 3,000 psi	$f'_{c} = 4,000 \text{ psi}$
diameter	depth	(20.7 MPa)	(27.6 MPa)	(20.7 MPa)	(27.6 MPa)	(20.7 MPa)	(27.6 MPa)	(20.7 MPa)	(27.6 MPa)
in. (mm)	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
3/8	2-1/16	1,040	1,200	920	920	2,130	2,460	1,725	1,725
3/6	(52)	(4.6)	(5.3)	(4.1)	(4.1)	(9.5)	(10.9)	(7.7)	(7.7)
1 /0	2-1/16	1,040	1,200	995	995	2,130	2,460	1,860	1,860
1/2	(52)	(4.6)	(5.3)	(4.4)	(4.4)	(9.5)	(10.9)	(8.3)	(8.3)
E /0	2-1/16	1,040	1,200	995	995	2,130	2,460	1,860	1,860
5/8	(52)	(4.6)	(5.3)	(4.4)	(4.4)	(9.5)	(10.9)	(8.3)	(8.3)
3/4	2-1/16	1,040	1,200	995	995	2,130	2,460	4,220	4,220
3/4	(52)	(4.6)	(5.3)	(4.4)	(4.4)	(9.5)	(10.9)	(18.8)	(18.8)

- 1 See section 3.1.8.6 to convert design strength value to ASD value.
- 2 Linear interpolation between concrete compressive strengths is not permitted.
- 3 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).
- 4 Tabular values are lightweight concrete and no additional reduction factor is needed.
- 5 No additional reduction factors for spacing or edge distance need to be applied.
- 6 Comparison of the tabular values to the steel strength is not necessary. Tabular values control.
- 7 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete For seismic tension loads, multiply cracked concrete tabular values in tension by α_{N,seis} = 0.75.

See section 3.1.8.7 for additional information on seismic applications.

Figure 5 - Installation of Hilti HCI-MD in the soffit of concrete over metal deck

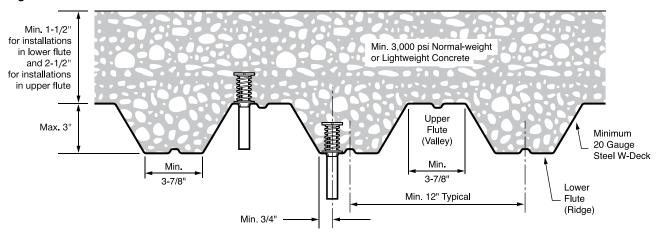


Table 17 - Design strength for steel failure of common threaded rods used with Hilti HCI-WF or HCI-MD cast-in inserts1

	G	rade A36 threaded	rod	ASTM A 193 B7	or ASTM F1554 Gr.	105 threaded rod
Nominal	Tensile ²	Shear ³	Seismic shear ⁴	Tensile ²	Shear ³	Seismic shear4
anchor diameter	φN _{sa} lb (kN)	φV _{sa} lb (kN)	φV _{sar,eq} Ib (kN)	φN _{sa} Ib (kN)	φV _{sa} lb (kN)	φV _{sar,eq} Ib (kN)
1/4	1,390	605	425	2,980	1,290	905
1/4	(6.2)	(2.7)	(1.9)	(13.3)	(5.7)	(4.0)
2 /0	3,395	1,470	1,030	7,265	3,150	2,205
3/8	(15.1)	(6.5)	(4.6)	(32.3)	(14.0)	(9.8)
1 /0	6,175	3,210	2,245	13,305	6,920	4,845
1/2	(27.5)	(14.3)	(10.0)	(59.2)	(30.8)	(21.5)
E /0	9,835	5,110	3,575	21,190	11,020	7,715
5/8	(43.7)	(22.7)	(15.9)	(94.3)	(49.0)	(34.3)
2//	14,550	7,565	5,295	31,360	16,305	11,415
3/4	(64.7)	(33.7)	(23.6)	(139.5)	(72.5)	(50.8)

- 1 See section 3.1.8.6 to convert design strength value to ASD value.
- 2 Tensile values determined by static tension tests with ϕ N_{sa} = ϕ A_{se,N} f_{uta} as noted in ACI 318 Appendix D.
- 3 Shear values determined by static shear tests with $\phi V_{sa} < \phi 0.60 A_{seV} f_{uta}$ as noted in ACI 318 Appendix D.
- 4 Seismic shear values determined by seismic shear tests with φ V_{ss} ≤ φ 0.60 A_{se,V} f_{uta} as noted in ACI 318, Annex D. See Section 3.1.8.7 for additional information on seismic applications.

Table 18 - UL LLC and FM approvals^{1,2}

			HCI-							
Nominal		Upper flute			Lower flute		HCI-WF			
anchor	UL max pipe	UL test	FM max pipe	UL max pipe	UL test	FM max pipe	UL max pipe	UL test	FM max pipe	
diameter	size (in.)	load (lb)	size (in.)	size (in.)	load (lb)	size (in.)	size (in.)	load (lb)	size (in.)	
3/8	4	1,500	4	4	1,500	4	4	1,500	4	
1/2	8	4,050	8	8	4,050	8	8	4,050	8	
5/8	12	7,900	12	-	-	-	8	4,050	-	
3/4	12	7,900	12	_	_	_	8	4,050	_	

- 1 UL LLC Listing based on successful completion of testing in accordance with UL 203.
- 2 FM Approval based on successful completion of testing in accordance with FM 1952.

3.3.13.3.2 Canadian Limit State design

Limit State Design of anchors is described in the provisions of CSA A23.3-14 Annex D for post-installed anchors tested and assessed in accordance with ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors. This section contains the Limit State Design tables with unfactored characteristic loads that are based on the published loads in ICC Evaluation Services ESR-3713. These tables are followed by factored resistance tables. The factored resitance tables have characteristic design loads that are prefactored by the applicable reduction factors for a single anchor with no anchor-to-anchor spacing or edge distance adjustments for the convenience of the user of this document. All the figures in the previous ACI 318-11 Appendix D design section are applicable to Limit State Design and the tables will reference these figures.

For a detailed explanation of the tables developed in accordance with CSA A23.3-14 Annex D, refer to Section 3.1.8. Technical assistance is available by contacting Hilti Canada at (800) 363-4458 or at www.hilti.ca

3.3.13

Table 19 - Hilti HCI-WF design information in accordance with CSA A23.3-14 Annex D1

÷

Design resonator	Cumbal	Lluito		Nomina	anchor	diameter		Ref
Design parameter	Symbol	Units	1/4	3/8	1/2	5/8	3/4	A23.3-04
Anchor O.D.	da	in.	0.0	68	_	87	1	
Allellor G.B.	u _a	(mm)	(17	.3)	(22	2.1)	(25.4)	
Effective embedment	h _{ef}	in.	1.88		2.06			
	et	(mm)	(47			(52.3)		
Minimum concrete thickness ³	h _{min}	in.	3-3	,		4-1/8		
	min	(mm)	(9			(105)		
Critical edge distance, uncracked	C _{ac,uncr}	in.	2.82			3.09		
	ac,unci	(mm)	(7	2)	1 1 10	(78)		
Minimum edge distance	C _{min}	in.			1-1/2			
		(mm)	0.	70	(38)	40	4.00	
Minimum anchor spacing, untorqued	S _{min,untor}	in.	2.7		_	48	4.00	
	<u> </u>	(mm) in.	(6 4.0			38) 22	(102) 6.00	
Minimum anchor spacing, torqued	S _{min,tor}	(mm)	(10		_	22 33)	(152)	
Steel embed. material resistance factor for reinforcement	φ,	(11111)	(10	74)	0.85	33)	(132)	8.4.3
Resistance modification factor for tension,	, i							
steel failure modes ²	R	-	0.70			D.5.3		
Resistance modification factor for shear,	R	_			0.65	0.65		
steel failure modes ²	• • • • • • • • • • • • • • • • • • • •							D.5.3
Factored steel resistance in tension goverend by insert	N _{sar}	lb	7,140	7,140	8,330	8,330	8,330	D.6.1.2
	Stil	(kN)	(32)	(32)	(37)	(37)	(37)	
Factored steel resistance in tension governed by insert, seismic	N _{sar, eq}	lb (I-N)	7,140	7,140	8,330	8,330	8,330	D.6.1.2
Scisific		(kN)	(32)	(32)	(37)	(37)	(37) 5,011	
Factored steel resistance in shear governed by insert	V _{sar}	(kN)	4,801 (21)	4,801 (21)	4,801 (21)	4,801 (21)	(22)	D.7.1.2
Fortunal standard and the standard stan		(KIN)	4,801	4,801	4,801	4,801	5,011	
Factored steel resistance in shear governed by insert, seismic	$V_{\text{sar,eq}}$	(kN)	(21)	(21)	(21)	(21)	(22)	D.7.1.2
Coeff. for factored conc. breakout resistance, uncracked		(KIV)	(21)	(21)	()	(21)	(22)	
concrete	k _{c,uncr}	-			10			D.6.2.2
Coeff. for factored conc. breakout resistance, cracked concrete	k _{c,cr}	-			10			D.6.2.2
Modification factor for anchor resistance, tension,	Ψ _{c,N}	-			1.25			D.6.2.6
uncracked conc.	* c,N							
Modification factor for anchor resistance, tension, cracked conc.	$\psi_{c,N}$	-			1.0			D.6.2.6
Anchor category	-	-			Cast-in			D.5.3 (c)
Concrete material resistance factor φ _c - 0.65				8.4.2				
Resistance modification factor for tension and shear, concrete failure modes, Condition B ³	R	-			1.00			D.5.3 (c)

¹ Design information in this table is taken from ICC-ES ESR-3713, dated July 2016, tables 1 and 3, and converted for use with CSA A23.3-14 Annex D.

² The carbon steel HCI-WF is considered a brittle steel element as defined by CSA A23.3-14 Annex D section D.2.

³ For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

Table 20 - Hilti HCI-WF cast-in insert design strength with concrete / pullout failure in uncracked concrete 1.2,3,4,5

÷

Nominal				Tensio	on - N _r		Shear - V _r			
anchor	Effective	Nominal	$f'_{0} = 20 \text{ MPa}$	$f'_{c} = 25 \text{ MPa}$	$f'_{0} = 30 \text{ MPa}$	$f'_{c} = 40 \text{ MPa}$	$f'_{c} = 20 \text{ MPa}$	$f'_{c} = 25 \text{ MPa}$	$f'_{c} = 30 \text{ MPa}$	$f'_{c} = 40 \text{ MPa}$
diameter	embed.	embed.	(2,900psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)
in.	in. (mm)	in. (mm)	lb (kN)							
1/4 and	1.88	2.01	2,715	3,035	3,325	3,840	2,715	3,035	3,325	3,840
3/8	(48)	(51)	(12.1)	(13.5)	(14.8)	(17.1)	(12.1)	(13.5)	(14.8)	(17.1)
1/2, 5/8	2.06	2.24	3,065	3,425	3,750	4,330	3,065	3,425	3,750	4,330
and 3/4	(52)	(57)	(13.6)	(15.2)	(16.7)	(19.3)	(13.6)	(15.2)	(16.7)	(19.3)

Table 21 - Hilti HCI-WF cast-in insert design strength with concrete / pullout failure in cracked concrete 1,2,3,4,5

÷

Nominal				Tensio	on - N _r		Shear - V _r			
anchor	Effective	Nominal	$f'_{0} = 20 \text{ MPa}$	$f'_{c} = 25 \text{ MPa}$	$f'_{0} = 30 \text{ MPa}$	$f'_{c} = 40 \text{ MPa}$	$f'_{c} = 20 \text{ MPa}$	$f'_{c} = 25 \text{ MPa}$	$f'_{c} = 30 \text{ MPa}$	$f'_{c} = 40 \text{ MPa}$
diameter	embed.	embed.	(2,900psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)
in.	in. (mm)	in. (mm)	lb (kN)							
1/4 and	1.88	2.01	2,175	2,430	2,660	3,075	2,175	2,430	2,660	3,075
3/8	(48)	(51)	(9.7)	(10.8)	(11.8)	(13.7)	(9.7)	(10.8)	(11.8)	(13.7)
1/2, 5/8	2.06	2.24	2,450	2,740	3,000	3,465	2,450	2,740	3,000	3,465
and 3/4	(52)	(57)	(10.9)	(12.2)	(13.3)	(15.4)	(10.9)	(12.2)	(13.3)	(15.4)

- 1 See section 3.1.8.6 to convert factored resistance value to ASD value.
- ${\small 2\quad \ Linear\ interpolation\ between\ concrete\ compressive\ strengths\ is\ not\ permitted.}$
- 3 Apply spacing, edge distance, and concrete thickness factors in Tables 5 to 10 as necessary. Compare to the steel values in Table 29. The lesser of the values is to be used for the design.
- 4 Tablular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: For sand-lightweight, $\lambda_a = 0.85$; for all-lightweight, $\lambda_a = 0.75$.
- 5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values by α_{seis} = 0.75.

÷

3.3.13

Table 22 - Hilti HCI-MD design information in accordance with CSA A23.3-14 Annex D1

÷

Design parameter	Symbol	Units	No	minal anc	hor diame	eter	Ref
Design parameter	Syllibol	Offics	3/8	1/2	5/8	3/4	A23.3-04
Anchor O.D.	d _a	in.	0.67	0.87	0.87	1	
74101101 0.2.	G _a	(mm)	(17.0)	(22.1)	(22.1)	(25.4)	
Effective embedment	h _{ef}	in.			95		
Eliocatio difficialità	ef	(mm)		(49			
Max. concrete cover over metal deck, lower flute install	h _{max}	in.			1/2		
	max	(mm)			3.1)		
Max. concrete cover over metal deck, upper flute install	h _{min}	in.			1/2		
, , , , , , , , , , , , , , , , , , ,	min	(mm)			3.5)		
Min. specified ult. strength	f _{ut}	lb	13,000	13,000	13,000	13,000	
<u> </u>		(kN)	(58)	(58)	(58)	(58)	
Steel embed. material resistance factor for reinforcement	Фѕ	-			85		8.4.3
Resistance modification factor for tension, steel failure modes ²	R	-			70		D.5.3
Resistance modification factor for shear, steel failure modes ²	R	-			65		D.5.3
Installation in lower flute of 1 1/2-inch minimu	ım flute he	ght (i.e. B-	deck) acc	ording to F	igure 6		
Factored pullout resistance, cracked	N _{pn,deck}	lb	455	455	455	455	
Table of parietines, Granica	*pn,deck	(kN)	(2.02)	(2.02)	(2.02)	(2.02)	
Factored steel strength in shear as governed by insert	V	lb	586	622	622	622	
Table of the origin in critical as governou by interior	V _{sa,deck}	(kN)	(2.61)	(2.76)	(2.76)	(2.76)	
Factored seismic steel strength in shear as governed by insert	V	lb	586	622	622	622	
	V _{sa,deck,eq}	(kN)	(2.61)	(2.76)	(2.76)	(2.76)	
Installation in lower flute of 3-inch minimum flute height (i.e. W-decl	with 4-1/2	2 inch flute	width) ac		Figure 7	
Factored pullout resistance, cracked	N	lb	1,105	1,105	1,105	1,105	
r actored pullout resistance, cracked	$N_{pn,deck}$	(kN)	(4.92)	(4.92)	(4.92)	(4.92)	
Factored steel strength in shear as governed by insert	V	lb	779	843	843	1,039	
Tactored steel strength in shear as governed by insert	V _{sa,deck}	(kN)	(3.47)	(3.75)	(3.75)	(4.62)	
Factored seismic steel strength in shear as governed by insert	V	lb	779	843	843	1,039	
ractored seismic steel strength in shear as governed by insert	V _{sa,deck,eq}	(kN)	(3.47)	(3.75)	(3.75)	(4.62)	
Installation in lower flute of 3-inch minimum flute height (i.e. W-decl	with 3-7/	8 inch flute	width) ac	cording to	Figure 8	
Factored willows we interest and	N	lb	965	965	965	965	
Factored pullout resistance, cracked	N _{pn,deck}	(kN)	(4.29)	(4.29)	(4.29)	(4.29)	
Footowed steel strength in show or servered by increase	.,	lb	713	771	771	771	
Factored steel strength in shear as governed by insert	V _{sa,deck}	(kN)	(3.17)	(3.43)	(3.43)	(3.43)	
Forting disciplinated attraction in about an account of the desired	\ <u></u>	lb	713	771	771	771	
Factored seismic steel strength in shear as governed by insert	V _{sa,deck,eq}	(kN)	(3.17)	(3.43)	(3.43)	(3.43)	
Anchor category	-	-		cas	t-in		D.5.3 (c)
Concrete material resistance factor	Фс	-		0.	65		8.4.2
Resistance modification factor for tension and shear, concrete failure modes, Condition B ³	R	-		1.	00		D.5.3 (c)

¹ Design information in this table is taken from ICC-ES ESR-3713, dated July 2016, tables 2 and 4, and converted for use with CSA A23.3-14 Annex D.

² The carbon steel HCI-WF is considered a brittle steel element as defined by CSA A23.3-14 Annex D section D.2.

³ For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

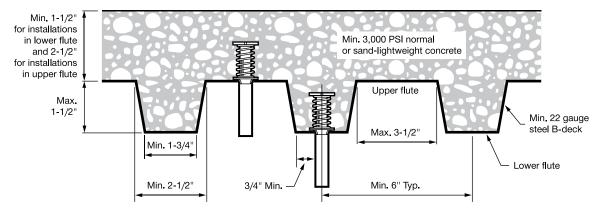
*

*

HCI-WF/MD Cast-in Anchor 3.3.13

Table 23 - Hilti HCI-MD factored resistance in the soffit of uncracked lightweight concrete over metal deck (B profile)^{1,2,3,4,5,6,7}

			Inst	Installation in lower flute			Installation in upper flute			
Nominal			Tension - N _r		Shear - V _r	Tension - N		Shear - V _r		
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)		
2 /0	1.95	2-1/16	560	685	585	2,430	2,975	1,465		
3/8	(50)	(52)	(2.5)	(3.0)	(2.6)	(10.8)	(13.2)	(6.5)		
1/2	1.95	2-1/16	560	685	625	2,430	2,975	1,585		
1/2	(50)	(52)	(2.5)	(3.0)	(2.8)	(10.8)	(13.2)	(7.1)		
5/8	1.95	2-1/16	560	685	625	2,430	2,975	1,585		
3/6	(50)	(52)	(2.5)	(3.0)	(2.8)	(10.8)	(13.2)	(7.1)		
2/4	1.95	2-1/16	560	685	625	2,430	2,975	3,590		
3/4	(50)	(52)	(2.5)	(3.0)	(2.8)	(10.8)	(13.2)	(16.0)		


Table 24 - Hilti HCI-MD factored resistance in the soffit of cracked lightweight concrete over metal deck (B profile)^{1,2,3,4,5,6,7}

			Inst	allation in lower	flute	Installation in upper flute			
Nominal	Nominal		Tensi	on - N _r	Shear - V _r	Tension - N _r		Shear - V _r	
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' c ≥ 20 MPa (2,900 psi) lb (kN)	
2 /0	1.95	2-1/16	445	550	585	1,945	2,380	1,465	
3/8	(50)	(52)	(2.0)	(2.4)	(2.6)	(8.7)	(10.6)	(6.5)	
1 /0	1.95	2-1/16	445	550	625	1,945	2,380	1,585	
1/2	(50)	(52)	(2.0)	(2.4)	(2.8)	(8.7)	(10.6)	(7.1)	
F /O	1.95	2-1/16	445	550	625	1,945	2,380	1,585	
5/8	(50)	(52)	(2.0)	(2.4)	(2.8)	(8.7)	(10.6)	(7.1)	
2/4	1.95	2-1/16	445	550	625	1,945	2,380	3,590	
3/4	(50)	(52)	(2.0)	(2.4)	(2.8)	(8.7)	(10.6)	(16.0)	

- 1 See section 3.1.8.6 to convert design strength value to ASD value.
- 2 Linear interpolation between concrete compressive strengths is not permitted.
- 3 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is $3 \times h_{ef}$ (effective embedment).
- 4 Tabular values are lightweight concrete and no additional reduction factor is needed.
- 5 No additional reduction factors for spacing or edge distance need to be applied.
- 6 Comparison of the tabular values to the steel strength is not necessary. Tabular values control.
- 7 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by α_{N,seis} = 0.75.

See section 3.1.8.7 for additional information on seismic applications.

Figure 6 - Installation of Hilti HCI-MD in the soffit

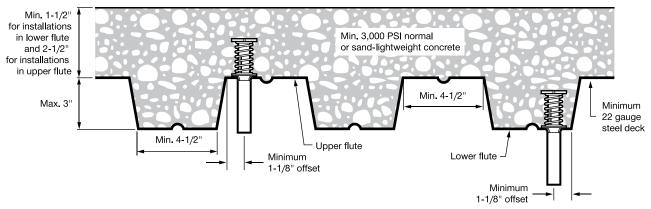
l±I

3.3.13

Table 25 - Hilti HCI-MD factored resistance in the soffit of uncracked lightweight concrete over metal deck (W profile with 4-1/2" width)1,2,3,4,5,6,7

*

			Inst	allation in lower	flute	Installation in upper flute		
Nominal			Tensio	on - N _r	Shear - V _r	Tension - N _r		Shear - V _r
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)
2 /0	1.95	2-1/16	1,360	1,665	780	2,430	2,975	1,465
3/8	(50)	(52)	(6.0)	(7.4)	(3.5)	(10.8)	(13.2)	(6.5)
1/2	1.95	2-1/16	1,360	1,665	845	2,430	2,975	1,585
1/2	(50)	(52)	(6.0)	(7.4)	(3.8)	(10.8)	(13.2)	(7.1)
E /0	1.95	2-1/16	1,360	1,665	845	2,430	2,975	1,585
5/8	(50)	(52)	(6.0)	(7.4)	(3.8)	(10.8)	(13.2)	(7.1)
3/4	1.95	2-1/16	1,360	1,665	1,185	2,430	2,975	3,590
3/4	(50)	(52)	(6.0)	(7.4)	(5.3)	(10.8)	(13.2)	(16.0)


Table 26 - Hilti HCI-MD factored resistance in the soffit of cracked lightweight concrete over metal deck (W profile with 4-1/2" width)1,2,3,4,5,6,7

*

			Inst	allation in lower	flute	Insta	allation in upper	flute
Nominal			Tension - N _r		Shear - V _r	Tension - N _r		Shear - V _r
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)
2 /0	1.95	2-1/16	1,085	1,330	780	1,945	2,380	1,465
3/8	(50)	(52)	(4.8)	(5.9)	(3.5)	(8.7)	(10.6)	(6.5)
1/2	1.95	2-1/16	1,085	1,330	845	1,945	2,380	1,585
1/2	(50)	(52)	(4.8)	(5.9)	(3.8)	(8.7)	(10.6)	(7.1)
5/8	1.95	2-1/16	1,085	1,330	845	1,945	2,380	1,585
3/6	(50)	(52)	(4.8)	(5.9)	(3.8)	(8.7)	(10.6)	(7.1)
2/4	1.95	2-1/16	1,085	1,330	1,040	1,945	2,380	3,590
3/4	(50)	(52)	(4.8)	(5.9)	(4.6)	(8.7)	(10.6)	(16.0)

- See section 3.1.8.6 to convert design strength value to ASD value.
- Linear interpolation between concrete compressive strengths is not permitted.
- Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).
- Tabular values are lightweight concrete and no additional reduction factor is needed.
- 5 No additional reduction factors for spacing or edge distance need to be applied.
- Comparison of the tabular values to the steel strength is not necessary. Tabular values control.
- Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by $\alpha_{\text{N,sels}}$ = 0.75. See section 3.1.8.7 for additional information on seismic applications.

Figure 7 - Installation of Hilti HCI-MD in the soffit of concrete over metal deck floor and roof assemblies

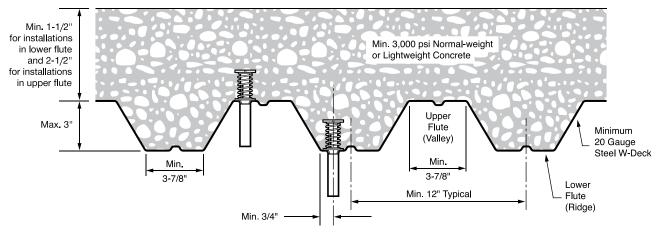
*

*

HCI-WF/MD Cast-in Anchor 3.3.13

Table 27 - Hilti HCI-MD factored resistance in the soffit of uncracked lightweight concrete over metal deck (W profile with 3-7/8" width)1,2,3,4,5,6,7

			Inst	Installation in lower flute			Installation in upper flute			
Nominal			Tension - N _r		Shear - V _r	Tension - N _r		Shear - V _r		
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)		
2 /0	1.95	2-1/16	1,185	1,455	780	2,430	2,975	1,465		
3/8	(50)	(52)	(5.3)	(6.5)	(3.5)	(10.8)	(13.2)	(6.5)		
1/0	1.95	2-1/16	1,185	1,455	845	2,430	2,975	1,585		
1/2	(50)	(52)	(5.3)	(6.5)	(3.8)	(10.8)	(13.2)	(7.1)		
E /0	1.95	2-1/16	1,185	1,455	845	2,430	2,975	1,585		
5/8	(50)	(52)	(5.3)	(6.5)	(3.8)	(10.8)	(13.2)	(7.1)		
2/4	1.95	2-1/16	1,185	1,455	845	2,430	2,975	3,590		
3/4	(50)	(52)	(5.3)	(6.5)	(3.8)	(10.8)	(13.2)	(16.0)		


Table 28 - Hilti HCI-MD factored resistance in the soffit of cracked lightweight concrete over metal deck (W profile with 3-7/8" width)^{1,2,3,4,5,6,7}

· p.oo m.		-,							
			Inst	allation in lower	flute	Installation in upper flute			
Nominal			Tensi	on - N _r	Shear - V _r	Tension - N _r		Shear - V _r	
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)	
0.70	1.95	2-1/16	950	1,160	715	1,945	2,380	1,465	
3/8	(50)	(52)	(4.2)	(5.2)	(3.2)	(8.7)	(10.6)	(6.5)	
1 /0	1.95	2-1/16	950	1,160	770	1,945	2,380	1,585	
1/2	(50)	(52)	(4.2)	(5.2)	(3.4)	(8.7)	(10.6)	(7.1)	
E /0	1.95	2-1/16	950	1,160	770	1,945	2,380	1,585	
5/8	(50)	(52)	(4.2)	(5.2)	(3.4)	(8.7)	(10.6)	(7.1)	
2/4	1.95	2-1/16	950	1,160	770	1,945	2,380	3,590	
3/4	(50)	(52)	(4.2)	(5.2)	(3.4)	(8.7)	(10.6)	(16.0)	

- 1 See section 3.1.8.6 to convert design strength value to ASD value.
- 2 Linear interpolation between concrete compressive strengths is not permitted.
- 3 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{nf} (effective embedment).
- 4 Tabular values are lightweight concrete and no additional reduction factor is needed.
- 5 No additional reduction factors for spacing or edge distance need to be applied.
- 6 Comparison of the tabular values to the steel strength is not necessary. Tabular values control.
- 7 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by α_{N,seis} = 0.75.

See section 3.1.8.7 for additional information on seismic applications.

Figure 8 - Installation of Hilti HCI-MD in the soffit of concrete over metal deck

3.3.13

Table 29 - Design strength for steel failure of common threaded rods used with Hilti HCI-WF or HCI-MD cast-in inserts1,2

÷

Nominal	G	rade A36 threaded	rod	ASTM A 193 B7 or ASTM F1554 Gr. 105 threaded rod				
anchor diameter in.	Tensile ³ N _{sar} Ib (kN)	Shear ⁴ V _{sar} Ib (kN)	Seismic shear ⁵ V _{sar,eq} Ib (kN)	Tensile ³ N _{sar} Ib (kN)	Shear ⁴ V _{sar} Ib (kN)	Seismic shear ⁵ V _{sar,eq} Ib (kN)		
1/4	1,260 (5.6)	595 (2.6)	415	2,700 (12.0)	1,265	890		
2/9	3,080	(2.6) 1,440	(1.8) 1,010	6,585	(5.6)	(4.0) 2,165		
3/8	(13.7)	(6.4)	(4.5)	(29.3)	(13.7)	(9.6)		
1/2	5,600	3,150	2,200	12,065	6,785	4,750		
1/2	(24.9)	(14.0)	(9.8)	(53.7)	(30.2)	(21.1)		
5 /Q	8,915	5,010	3,505	19,210	10,810	7,565		
5/8	(39.7)	(22.3)	(15.6)	(85.4)	(48.1)	(33.7)		
2/4	13,190	7,420	5,195	28,435	15,990	11,195		
3/4	(58.7)	(33.0)	(23.1)	(126.5)	(71.1)	(49.8)		

- See Section 3.1.8.6 to convert factored resistance value to ASD value.
- Hilti HCI-WF and HCI-MD anchors are to be considered ductile steel elements.
- Tensile $N_{sar} = A_{se} \phi_s f_{ut} R$ as noted in CSA A23.3-14 Annex D.
- Shear determined by static shear tests with $V_{sar} < 0.6 \, A_{se,V} \, \phi_s \, f_{ut} \, R$ as noted in CSA A23.3-14 Annex D. Seismic shear values determined by seismic shear tests with $V_{sar,eq} < 0.60 \, A_{se,V} \, \phi_s \, f_{ut} \, R$ as noted in CSA A23.3-14 Annex D. See Section 3.1.8.7 for additional information on seismic applications.

3.3.13.4 Installation instructions

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.us.hilti.com (US) and www.hilti.ca (Canada). Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

3.3.13.5 Ordering information¹

HCI - WF cast-in anchor for use in wood forms

Description	Sleeve color ²	Qty / box
HCI - WF 1/4	Green	150
HCI - WF 3/8	Red	150
HCI - WF 1/2	Orange	100
HCI - WF 5/8	Yellow	100
HCI - WF 3/4	Black	100

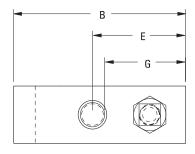
HCI - MD cast-in anchor for use in metal deck

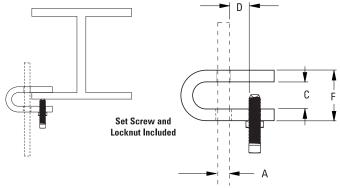
Description	Sleeve color ²	Qty / box	Hole saw diameter
HCI - MD 3/8	Red	100	7/8
HCI - MD 1/2	Orange	60	1-3/16
HCI - MD 5/8	Yellow	60	1-3/16
HCI - MD 3/4	Black	60	1-1/4

- 1 All dimensions in inches
- 2 Identifies anchor size

TOLCO™ Fig. 67SS - Stainless Steel Reversible C-Type Beam Clamp ³/4" (19.0mm) Throat Opening TOLCO™ Fig. 68SS - Stainless Steel Reversible C-Type Beam Clamp Wide Mouth

Size Range: 3/8"-16 and 1/2"-13 rod sizes **Material:** Stainless Steel (Type 316 or 304)


Function: Recommended for hanging from steel beams where flange thickness does not exceed $^3/^4$ " (19.0mm) for Fig. 67SS or $^{11}/^4$ " (31.7mm) for Fig. 68SS.


Features: All steel construction eliminates structural deficiencies associated with casting type beam clamps. May be used on top or bottom flange of beam. May be installed with set screw in up or down position. Offset design permits unlimited rod adjustment by allowing the rod to be threaded completely through the clamp.

Approvals: Underwriters Laboratories Listed in the USA (UL) and Canada (cUL). Conforms to Manufacturers Standardization Society ANSI/MSS SP-69 & SP-58, Type 19. Meets or exceeds requirements of the National Fire Protection Association (NFPA), pamphlet 13.

 $^{3}/8"-16$ rod will support $^{1}/2"$ (15mm) thru 4" (100mm) pipe $^{1}/2"-13$ rod will support $^{1}/2"$ (15mm) thru 8" (200mm) pipe

Order By: Part number and stainless steel type.

Fig. 67SS

Part	Rod Size	Pipe	Size		В		С		D	Е	
No.	Α	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)
67SS- ³ /8	³ /8"-16	1/2" - 4"	(15 - 100)	3"	(76,2)	7/8"	(22.2)	1"	(25.4)	1 ⁵ /8"	(41.3)
67SS-1/2	¹ /2"-13	5" - 8"	(125 -200)	3″	(76,2)	7/8"	(22.2)	1"	(25.4)	1 ⁵ /8"	(41.3)

Part	F		(G	Test	Load	Approx. Wt./100		
No.	in.	(mm)	in.	(mm)	lbs.	(kN)	lbs.	(kg)	
67SS- ³ /8	1 ⁵ /8"	(41.3)	1 ¹ /8"	(28.6)	1500	(6.67)	84	(38.1)	
67SS- ¹ /2	1 ⁵ /8"	(41.3)	1 ¹ /8"	(28.6)	4050	(18.01)	170	(77.1)	

Fig. 68SS *

Part	Rod Size	Pipe Size	В	C	D	E
No.	Α	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)
68SS- ³ /8	³ /8"-16	¹ /2" - 4" (15 - 100)	2 ¹ /16" (52.4)	1 ¹ /8" (28.6)	³ /4" (19.0)	1 ¹ /4" (31.7)
68SS- ¹ /2	¹ /2"-13	5" - 8" (125 -200)	2 ¹ /4" (57.1)	1 ¹ /4" (31.7)	¹³ / ₁₆ " (20.6)	1 ¹ /4" (31.7)

Part	F	Test Load	Approx. Wt./100
No.	in. (mm)	lbs. (kN)	lbs. (kg)
68SS- ³ /8	2" (50.8)	1500 (6.67)	84 (38.1)
68SS- ¹ /2	2 ¹ /4" (57.1)	4050 (18.01)	170 (77.1)

^{*} Fig. 68SS minimum order quantity of 30 pieces.

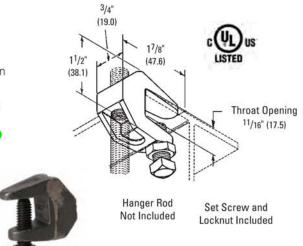
Note: See page 27 for recommended setscrew torque.

B3031-3/8 - Light Duty Malleable C-Clamp

Material: Malleable Iron

Function: Designed for attaching a 3/8"-16 hanger rod to the top or bottom flange of a beam or bar joist when setscrew is in the down position

Approvals: Underwriters Laboratories Listed in the USA (UL) and Canada (cUL) for up to 4" pipe. Conforms to Federal Specification WW-H-171E & A-A-1192A, Type 19 and Manufacturers Standardization Society ANSI/MSS SP-69 & SP-58, Type 19.


Finish: Plain or Electro-Galvanized

Order By: Part number and finish. When retaining strap is required,

order Fig. 69 separately. See Page 37. Weight: Approx. Wt./100 25 Lbs. (11.3kg)

Design Load: 350 Lbs. (1.55kN)

Note: See page 27 for recommended setscrew torque.

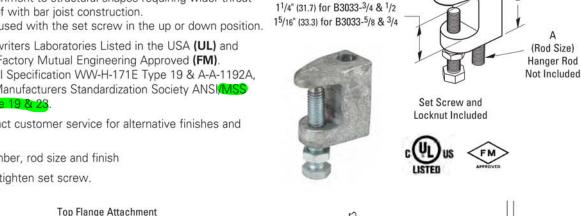
B3033 - Wide Jaw Reversible C-Clamp

Size Range: 3/8"-16 thru 3/4"-10 rod

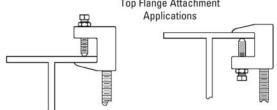
Material: Cast Malleable Steel with hardened cup point set screw

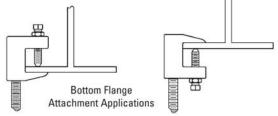
and jam nut

Function: For attachment to structural shapes requiring wider throat especially under roof with bar joist construction.


This clamp may be used with the set screw in the up or down position.

Approvals: Underwriters Laboratories Listed in the USA (UL) and Canada (cUL), and Factory Mutual Engineering Approved (FM). Conforms to Federal Specification WW-H-171E Type 19 & A-A-1192A, Type 19 & 23 and Manufacturers Standardization Society ANSIMIS SP-69 & SP-58, Type 19 & 23


Finish: Plain. Contact customer service for alternative finishes and materials.


Order By: Part number, rod size and finish

Note: Do not over tighten set screw.

Throat Opening

Part No.	Rod Size		В	(;	ı	0	Design Load v	vith Setscrew		num Iron ze Per UL		rox. :/100
	Α	in.	(mm)	in.	(mm)	in.	(mm)	Lbs.	(kN)	in.	(mm)	Lbs.	(kg)
B3033-3/8	3/8"-16	21/4"	(57.1)	2"	(50.8)	1 ¹ /8"	(28.6)	500	(2.22)	4"	(100)	54	(24.5)
B3033-1/2	1/2"-13	2 ⁵ /16"	(58.7)	23/16"	(55.6)	11/4"	(31.7)	810	(3.60)	8"	(200)	51	(23.1)
B3033-5/8	⁵ /8"-11	25/8"	(66.7)	21/2"	(63.5)	13/8"	(34.9)	1000	(4.45)	8"	(200)	70	(31.7)
B3033-3/4	3/4"-10	2 ¹¹ /16"	(68.3)	21/2"	(63.5)	1 ⁷ /16"	(36.5)	1400	(6.23)	10"	(250)	98	(44.4)

Note: See page 27 for recommended setscrew torque.

Beam Clamps

B3034 - C-Clamp

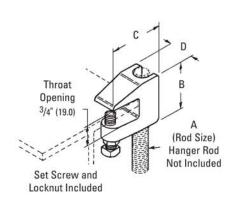
Size Range: 3/8"-16 thru 3/4"-10 rod

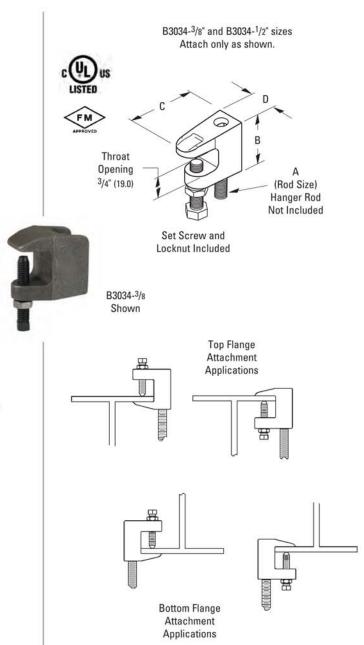
Material: Cast Malleable Steel with hardened cup point set

screw and jam nut

Function: Recommended for hanging from steel beam where flange thickness does not exceed 3/4" (19.0mm).

Features: May be used on top or bottom flange of the beam. Beveled lip allows hanging from top flange where clearance is limited. may be installed with the set screw in the up or down position. Offset design permits unlimited rod adjustment by allowing the rod to be threaded completely through the clamp. The rear window design permits inspection of thread engagement.


Approvals: Underwriters Laboratories Listed in the USA (UL) and Canada (cUL), and Factory Mutual Engineering Approved (FM) for 3/8"-16 and 1/2"-13 rod sizes.


Conforms to Federal Specification WW-H-171E & A-A-1192A, Type 19 & 23 and Manufacturers Standardization Society ANSI/MSS SP-69 & SP-58, Type 19 & 23 3/8"-16 is (cULus) Listed to support up to 4" (100mm) pipe with the set screw in the down position, up to 3" (75mm) pipe with the set screw in the up position. 1/2"-13 is (cULus) Listed to support up to 8" (200mm) pipe with the set screw in the down position, up to 6" (150mm) pipe with the set screw in the up position.

Finish: Plain. Contact customer service for alternative finishes and materials.

Order By: Part number and finish

B3034-5/8" and B3034-3/4" sizes Attach only as shown.

Part No.	Rod Size	ı	3		C	1	0	Design Load v	vith Setscrew	1/2	num Iron ze Per UL		prox. t./100
	Α	in.	(mm)	in.	(mm)	in.	(mm)	Lbs.	(kN)	in.	(mm)	Lbs.	(kg)
B3034-3/8	³ /8"-16	1 ⁵ /8"	(41.3)	2"	(50.8)	7/8"	(19.0)	560	(2.49)	4"	(100)	30	(13.6)
B3034-1/2	1/2"-13	113/16"	(46.0)	23/16"	(55.6)	13/16"	(30.2)	810	(3.60)	8"	(200)	47	(21.3)
B3034-5/8	5/8"-11	13/4"	(44.5)	21/8"	(54.0)	11/4"	(31.7)	1000	(4.45)			58	(26.3)
B3034-3/4	3/4"-10	2"	(50.8)	21/4"	(57.2)	11/4"	(31.7)	1500	(6.67)			77	(35.0)

Note: See page 27 for recommended setscrew torque.

Phone: 800-243-6624 Fax: 800-345-7819 Email: SetonUSA@seton.com

PRODUCT DATA SHEET

OPTI-CODE™ PIPE MARKERS

Description:		Code™ Pipe Markers are made of se NSI specifications for background an eight.						
Use:		Seton Opti-Code [™] Pipe Markers are designed for use on pipes from 3/4" O.D. to over 10" O.D. and for use indoors and outdoors.						
Compliance:	meets ANSI	Seton Opti-Code™ Pipe Markers meet ASME/ANSI A13.1-2007 standards and meets ANSI specifications for background and letter colors, length of field and letter height.						
Standard Legend Colors:	Black and W	/hite						
Standard Background Colors:	Blue, Brown, Green, Orange, Red, and Yellow							
Thickness (PSTC-33):	Total 0.005 i	n. (0.125mm).						
Gloss:	60 Gardner	Units.						
Standard Sizes/Dimensions:	Marker Size	Fits Pipe Outer Diameter	Length Color Field	Letter Height				
	8SM	.75" - 1.375" (19mm - 35mm)	8" (203mm)	.5" (13mm)				
	8LG	1.5" - 2.375" (38mm - 60mm)	8" (203mm)	.75" (19mm)				
	12	2.5" - 7.875" (64mm - 200mm)	12" (305mm)	1.25" (32mm)				
	24	8" - 10" (203mm - 254mm)	24" (610mm)	2.50" (64mm)				
	32	over 10" (over 254mm)	32" (813mm)	3.50" (89mm)				
Date: / /	_ Job:							

Contractor

5SETON

OPTI-CODE™ PIPE MARKERS (CONTINUED)

Adhesive Properties:	Adhesion to steel (PSTC-1) 15 min. dwell (Avg)—75 oz/in. (82 N/100 mm) Ultimate (72 hrs. dwell) (Avg)—116 oz/in. (127 N/100 mm) Tack (ASTM-2979) (Avg)—800g (8 N) Drop Shear (PSTC-7) (Avg)—4 Hrs						
Abrasion Resistance:	CS-17 Wheels, 1000 g.	wts.					
(Method 5306 of U.S. Federal Test Method Std. No. 191A):	Legend withstands up to 700 cycles. Substrate withstands up to 8000 cycles.						
Service Temperature:	-40°F to 180°F (-40°C to	o 82°C).					
Average Outdoor Durability:		5 years (Average expected outdoor life of product will depend on user definition failure, climactic conditions, mounting techniques, and material color).					
Chemical Resistance:	Reagent	7 day Immersion	Dip Test	Rub Test			
	30% Sulfuric Acid	NE	NE	NE			
	10% Sulfuric Acid	NE	NE	NE			
	30% HCL	F	NE	NE			
	10% HCL	NE	NE	NE			
		F	NE NE				
	50% NaOH			NE			
	10% NaOH	F	NE	NE			
	Gasoline	F	NE	F			
	Turpentine	F _	NE	F			
	Glacial Acetic Acid	F	NE	F			
	5% Acetic Acid	NE	NE	NE			
	Cellosolve Acetate	F	F	F			
	Conc. Ammonia	NE	NE	NE			
	10% Ammonia	NE	NE	NE			
	Methyl Ethyl Ketone	F	F	F			
	Acetone	F	F	F			
	Methanol	F	NE	F			
	1,1,1, Trichloroethane	F	F	F			
	IPA (Isopropanol)	F	NE	F			
	ASTM #3 Oil	NE	NE	NE			
	SAE 20 Oil	NE	NE	NE			
	Mineral Spirits	F	NE	NE			
	Diesel Fuel	F	NE	F			
	Heptane	F	NE	F			
	Toluene	F	F	F			
	Alconox	F	NE	NE			
	Kerosene	NE	NE	NE			
	Water	NE	NE	NE			
	NE: No Effect F: Faile		INL	142			
7 Day Immersion:	Immersed in reagent for	7 days.					
Dip Test:	Five 10 minute dips in re	eagent with 30 minute i	recovery.				
Rub Test:	Rubbed sample for one	minute with swab soak	ed in reagent.				
Shelf Life:	1 year when stored at 7	0°F (21°C) and 40% to	50% R.H.				

800.243.6624 seton.com

Fax **800.345.7819**

Email SetonUSA@seton.com

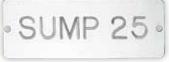
20 Thompson Road, Branford, CT 06405-0819

PRODUCT DATA SHEET

Engraved Nameplates

Description: Professional-looking Engraved Nameplates are ideal for identifying panel controls, switch

boxes or custom installations.


Engraved Aluminum Nameplates

Material:	Aluminum
Thickness:	.020 (+002)
Color Options:	Black, Blue, and Red
Sizes:	2-1/2"W x 3/4"H 3"W x 1"H 4"W x 1-1/2"H 6"W x 3"H
Adhesive:	3M 467 (optional)
Mounting Holes:	Two side holes (unless adhesive ordered)
Service Temperature:	-40°F to 350°F (-40°C to 177°C).
Application Temperature:	50°F (10°C).
Average Outdoor User Durability:	Good for both Indoor and Outdoor use

Engraved Stainless Steel Nameplates

f
· SUMP 2
neter side holes
eel auge 3/4" Udian

AC-400 CHILLER

Average Outdoor User Durability:

Designed for use in harsh or corrosive environments

Date:	/	/	Job:
Contractor			

Fax: 800-345-7819 Email: SetonUSA@seton.com

PRODUCT DATA SHEET

VALVE TAGS

Use: Meet ANSI/ASME A13.1-1981 for identification of materials in pipes of less than

3/4" (19mm) in diameter, and for valve and fitting identification.

Features: Stamping or engraving available. Sequential numbering available.

BRASS VALVE TAGS

Material:	19 gauge solid Brass				
Size/Shape:	1-1/2" Round 1-1/2" Hexagon	2" Round 2" Octagon	1-1/2" Square 1-1/2" Triangle	2" Square 2" Triangle	
Ink Fill Color Options: Black, Blue, Natural, Red, or White					
Maximum Temperature: Material 1200°F. Ink fill 233°F					
Top Hole Size:	3/16"				
Letter Height:	1/4"				
Number Height:	1/2"				

ALUMINUM VALVE TAGS

Material:	19 gauge Aluminum			
Size/Shape:	1-1/2" Round	2" Round	1-1/2" Square	2" Square
Ink Fill Color Options:	Black, Blue, Red, or White			
Maximum Temperature:	Material 1500°F. Ink fill 233°F.			
Top Hole Size:	3/16"			
Letter Height:	1/4"			
Number Height:	1/2"			

STAINLESS STEEL VALVE TAGS

Material:	.025 / Grade 304 Stainless Steel				
Size/Shape:	1-1/2" Round	2" Round	1-1/2" Square	2" Square	
Ink Fill Color Options:	Natural				
Maximum Temperature:	Material 2700°F. Ink fill 233°F				
Top Hole Size:	3/16"				
Letter Height:	1/4"				
Number Height:	1/2"				

Date:	/	/	Job:	

Contractor

5SETON Fax: 800-345-7819 **20** Phone: 800-243-6624 www.seton.com

1763/0409

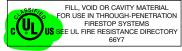
High-performance intumescent firestop sealant FS-ONE MAX

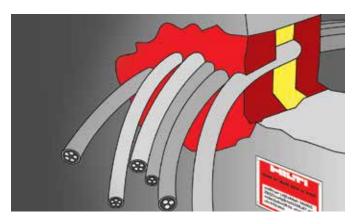
Applications

- For effectively sealing most common through penetrations in a variety of base materials
- For use on concrete, masonry and drywall
- Mixed and multiple penetrations
- Metal pipe penetrations: copper, steel and EMT
- Insulated metal pipe penetrations: steel and copper
- Plastic pipe penetrations: closed or vented

Advantages

- US-produced: "Buy American" compliant
- One product for a variety of common through penetrations
- Cost-effective, easy-to-use solution
- Water-based and paintable
- Industry-leading VOC results
- Ethylene glycol-free





Mold and mildew

Technical data	
Chemical basis	Water-based acrylic dispersion
Approx. Density	84.3 lb/ft ³
Color	Red
Application temperature range	41 - 104 °F
Approx. cure time ¹⁾	4 mm/3 days
Temperature resistance range	-4 to 212 °F
Mold and mildew performance	Class 0 (ASTM G21-96)
Mold and mildew resistance	Yes
Surface burning characteristics UL 723 (ASTM E84)	Flame spread: 0 Smoke development: 10
Tested in accordance with	UL 1479, ASTM E814, ASTM E84, CAN/ ULC-S115, ASTM G21, ASTM E90
California State fire marshal approval	CSFM Listing 4485-1200:0108 for FS-ONE MAX Intumescent Firestop Sealant
Expansion ratio (unrestricted, up to)	1:5

¹⁾ at 75°F/24°C, 50% relative humidity

Order Designation	Package Content	Item number
FS-ONE MAX 20oz foil (3 case + disp)	1x Foil pack dispenser manual CS 270-P1, 75x Firestop sealant FS-ONE MAX 20 oz foil	3530252
FS-ONE MAX 10oz tube (1 case)	12x Firestop sealant FS-ONE MAX 10 oz cartridge	3530249
FS-ONE MAX 5 gallon (18 pails)	18x Firestop sealant FS-ONE MAX 5 gallon pail	3530263
FS-ONE MAX 20oz foil (1 case)	25x Firestop sealant FS-ONE MAX 20 oz foil	3530250
FS-ONE MAX 20oz foil (3 cases)	75x Firestop sealant FS-ONE MAX 20 oz foil	3530251
FS-ONE MAX 20oz Foil-Pallet	600x FSONE-MAX 20 oz foil, 290x Bulk Shipping Condition	3534713
FS-ONE MAX 10 oz cartridge		2101531
FS-ONE MAX 5 gallon pail		2101533

Cast-In Firestop Devices (CP 680-P and CP 680-M)

For use in

- Dust and fiber free environments such as hospitals, computer centers and laboratories
- Concrete floor assemblies rated up to 4 hours

Product description

- A one-step cast-in firestop device for a variety of pipe materials and diameters
- Helps reduce labor costs and increase productivity
- Ready-to-use out of the package
- Internationally tested and approved by UL and FM
- Reduces the chance of project delays due to failed inspections

Product features

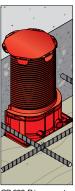
- Quick and simple installation
- SpeedLine Alignment system promotes faster layout
- QuickTurn System creates fast, simple vertical connections
- Integrated moisture and smoke seal
- Innovative adapter for metal deck applications

Installation and applications

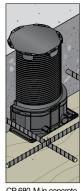
 Concrete floors from 2.5" (63 mm) thickness for either flat concrete or concrete over metal deck

CP 680-M:

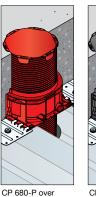
- Insulated and non-insulated metal pipes
- EMT and electrical conduits
- Cable bundles
- Multiple pipes


CP 680-P:

Addresses all applications for CP 680-M as well as the following:


- Plastic pipes such as PVC, CPVC, ABS, ENT and FRPP
- Fresh and waste water pipes

Not suited for


- Areas with high condensation
- Outdoor areas
- Wall applications

CP 680-P in concrete over wood forms

CP 680-M in concrete over wood forms

metal deck n

CP 680-M over metal deck

Techr	nical Data	CP 680-P and CP 680-M
ID	Footprint	Opening required thru metal deck
2"	3-3/4" x 4-1/2"	3-1/2" diameter
3"	4-3/4" x 5-5/8"	4-1/2" diameter
4"	6-3/8" x 6-3/4"	5-1/2" diameter
6"	9" x 9-1/2"	7-1/4" diameter
Expans	sion temperature	392°F (200°C)
Expans	sion rate	1:50 (unrestrained) 1:30 (Load expansion, Load = 20g/cm³)
Standard height		8"
Tempe	rature resistance	Maximum 212°F (100°C)
Color		CP 680-P: red CP 680-M: black

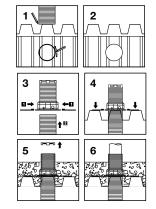
Tested in accordance with

• UL 1479 • ASTM E 814 • ASTM G21

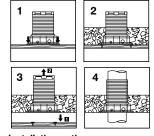
Internationally tested and approved

Installation instructions

Notice


- Before handling, read Material Safety Data Sheet and product label for safe usage and health information.
- Instructions below are general guidelines always refer to the applicable drawing in the UL Fire Resistance Directory or Hilti Firestop Systems Guide for complete installation information

Instructions for use


- Before pouring concrete, secure the cover cap in place, thereby preventing the flow of concrete into the cast-in device
- · Do not use for wall applications

Concrete floor with metal decking

For concrete floor with metal decking applications use the correct size CP 680 Metal Deck Adapter for installed cast-in device and follow the illustrations.

Concrete floor

Installation option

Follow the illustrations if CP 680 has to be cut to slab thickness before installation, or when riser clamps are used.

Hilti. Outperform. Outlast.